中国电力 ›› 2024, Vol. 57 ›› Issue (12): 169-177.DOI: 10.11930/j.issn.1004-9649.202310090
万明元1(), 任鑫2(
), 王渡2, 金亚飞2, 王志刚2, 王廷举3, 杨昌宏2, 刘昊坤2
收稿日期:
2023-10-20
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
万明元(1992—),男,硕士,从事大型电站热力系统优化及经济性分析,E-mail:610641819@qq.com基金资助:
Mingyuan WAN1(), Xin REN2(
), Du WANG2, Yafei JIN2, Zhigang WANG2, Tingju WANG3, Changhong YANG2, Haokun LIU2
Received:
2023-10-20
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
为分析100 MW级联式超临界二氧化碳(supercritical carbon dioxide,S-CO2)循环的变负荷动态特性和最佳变负荷控制策略,利用多学科仿真平台(multi-disciplinary simulation platform,MSP)建立了100 MW级联式S-CO2循环的动态仿真模型,考虑阀门调节的低成本和快速性,提出了4种阀门调节的负荷控制策略(高温透平节流调节、低温透平节流调节、高温透平旁通调节和低温透平旁通调节),分析了系统升、降负荷过程中关键参数的变化规律,得出结论:不同负荷控制策略对压缩机功率的影响较小;采用高温透平节流调节具有最高的循环效率,负荷率为75%和50%时,循环效率分别为27.60%和21.22%;节流调节会引起系统最高压力增大,负荷率为50%时,采用高温透平节流调节的最高压力为28.57 MPa;采用旁通调节可以避免超压风险,但循环效率较低。在保证系统承压能力的前提下,建议采用高温透平节流调节方式调节负荷。
万明元, 任鑫, 王渡, 金亚飞, 王志刚, 王廷举, 杨昌宏, 刘昊坤. 100 MW级联式S-CO2循环动态特性研究[J]. 中国电力, 2024, 57(12): 169-177.
Mingyuan WAN, Xin REN, Du WANG, Yafei JIN, Zhigang WANG, Tingju WANG, Changhong YANG, Haokun LIU. Study of Dynamic Characteristics of 100 MW Cascade S-CO2 Cycle[J]. Electric Power, 2024, 57(12): 169-177.
参数 | 高温透 平入口 温度/℃ | 高温透 平入口 压力/MPa | 低温透 平入口 温度/℃ | 低温透 平入口 压力/MPa | 压缩机 流量/ (kg·s–1) | 压缩机 入口 温度/℃ | 压缩机 入口 压力/MPa | 压缩机 出口温度/ ℃ | 压缩机 出口 压力/MPa | S-CO2循环 净功率/MW | 循环 效率/% | |||||||||||
仿真值 | 551.2 | 27.79 | 298.20 | 27.65 | 1 243.40 | 32 | 7.7 | 73.10 | 27.98 | 118.90 | 32.20 | |||||||||||
文献值[ | 551.2 | 27.86 | 302.00 | 27.72 | 1 240.00 | 32 | 7.7 | 73.20 | 28.00 | 118.50 | 32.10 | |||||||||||
误差/% | 0 | –0.25 | –1.26 | –0.25 | 0.27 | 0 | 0 | –0.14 | –0.07 | 0.34 | 0.10 |
表 1 模型验证结果
Table 1 Results of the model validation
参数 | 高温透 平入口 温度/℃ | 高温透 平入口 压力/MPa | 低温透 平入口 温度/℃ | 低温透 平入口 压力/MPa | 压缩机 流量/ (kg·s–1) | 压缩机 入口 温度/℃ | 压缩机 入口 压力/MPa | 压缩机 出口温度/ ℃ | 压缩机 出口 压力/MPa | S-CO2循环 净功率/MW | 循环 效率/% | |||||||||||
仿真值 | 551.2 | 27.79 | 298.20 | 27.65 | 1 243.40 | 32 | 7.7 | 73.10 | 27.98 | 118.90 | 32.20 | |||||||||||
文献值[ | 551.2 | 27.86 | 302.00 | 27.72 | 1 240.00 | 32 | 7.7 | 73.20 | 28.00 | 118.50 | 32.10 | |||||||||||
误差/% | 0 | –0.25 | –1.26 | –0.25 | 0.27 | 0 | 0 | –0.14 | –0.07 | 0.34 | 0.10 |
1 |
GUO J Q, LI M J, HE Y L, et al. A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries: technologies, key issues and potential prospects[J]. Energy Conversion and Management, 2022, 258, 115437.
DOI |
2 |
XU J L, LIU C, SUN E H, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186, 115831.
DOI |
3 |
EHSAN M M, GUAN Z Q, GURGENCI H, et al. Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: review and a case study[J]. Renewable and Sustainable Energy Reviews, 2020, 132, 110055.
DOI |
4 | 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55 (8): 202- 212. |
DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "carbon peaking and carbon neutrality" goal[J]. Electric Power, 2022, 55 (8): 202- 212. | |
5 |
MA T, LI M J, XU J L, et al. Study of dynamic response characteristics of S-CO2 cycle in coal-fired power plants based on real-time micro-grid load and a novel synergistic control method with variable working conditions[J]. Energy Conversion and Management, 2022, 254, 115264.
DOI |
6 | 刘文杰, 彭慈华, 姚剑, 等. 直膨式太阳能PVT热泵热水系统运行性能仿真与分析[J]. 中国电力, 2023, 56 (3): 23- 29. |
LIU WenJie, PENG Cihua, YAO Jian, et al. Simulation and analysis on the solar-assisted direct-expansion PVT heat pump hot water system in Lingang[J]. Electric Power, 2023, 56 (3): 23- 29. | |
7 | 郭亚龙, 刘铠瑞, 王超, 等. S-CO2发电系统负荷跟随控制策略及动态特性研究[J]. 中国电机工程学报, 2023, 43 (23): 9149- 9161. |
GUO Yalong, LIU Kairui, WANG Chao, et al. Study on load following control strategy and dynamic characteristics of S-CO2 power generation system[J]. Proceedings of the CSEE, 2023, 43 (23): 9149- 9161. | |
8 | 李新宇, 秦政, 董克用, 等. 超临界二氧化碳再压缩循环发电系统安全控制试验研究[J]. 中国电机工程学报, 2023, 43 (17): 6727- 6737. |
LI Xinyu, QIN Zheng, DONG Keyong, et al. Experimental study on safety control of supercritical carbon dioxide recompression cycle power system[J]. Proceedings of the CSEE, 2023, 43 (17): 6727- 6737. | |
9 | 赵德材, 王波, 张士杰. 超临界二氧化碳布雷顿循环的透平旁路启动特性[J]. 中国电机工程学报, 2023, 43 (23): 9161- 9171. |
ZHAO Decai, WANG Bo, ZHANG Shijie. Turbine bypass startup characteristics of supercritical carbon dioxide Brayton cycle[J]. Proceedings of the CSEE, 2023, 43 (23): 9161- 9171. | |
10 |
BIAN X Y, WANG X, WANG R, et al. Optimal selection of supercritical CO2 Brayton cycle layouts based on part-load performance[J]. Energy, 2022, 256, 124691.
DOI |
11 |
MA T, LI M J, XUE X D, et al. Study of peak-load regulation characteristics of a 1000MWe S-CO2 coal-fired power plant and a comprehensive evaluation method for dynamic performance[J]. Applied Thermal Engineering, 2023, 221, 119892.
DOI |
12 |
WANG R, LI X Y, QIN Z, et al. Control strategy for actual constraints during the start–stop process of a supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2023, 226, 120289.
DOI |
13 |
GAO C T, WU P, LIU W H, et al. Development of a bypass control strategy for supercritical CO2 Brayton cycle cooled reactor system under load-following operation[J]. Annals of Nuclear Energy, 2021, 151, 107917.
DOI |
14 |
DAI C H, SONG P, MA C, et al. Research on response characteristics and control strategy of the supercritical carbon dioxide power cycle[J]. Processes, 2021, 9 (11): 1943.
DOI |
15 |
LIESE E, ALBRIGHT J, ZITNEY S. Startup, shutdown and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle[J]. Applied Energy, 2020, 277, 115628.
DOI |
16 | YANG Z J, LE MOULLEC Y, ZHANG J Y, et al. Dynamic modeling of 5 MWe supercritical CO2 recompression Brayton cycle[C]//AIP Conference Proceedings. Santiago, Chile. 2018: 070003. |
17 | 张一帆, 李红智, 刘岗, 等. 压缩机透平分轴布置的超临界CO2简单回热循环动态特性[J]. 中国电机工程学报, 2023, 43 (11): 4116- 4127. |
ZHANG Yifan, LI Hongzhi, LIU Gang, et al. Dynamic characteristics of the supercritical CO2 simple recuperation cycle with compressor and turbine arranged in separate shafts[J]. Proceedings of the CSEE, 2023, 43 (11): 4116- 4127. | |
18 | 薛琪, 冯民, 马云铎, 等. 超临界二氧化碳核能系统负荷运行策略研究[J]. 西安交通大学学报, 2023, 57 (5): 136- 148. |
XUE Qi, FENG Min, MA Yunduo, et al. Study on load operation strategy for supercritical carbon dioxide nuclear power system[J]. Journal of Xi'an Jiaotong University, 2023, 57 (5): 136- 148. | |
19 | 覃硕, 梁世强, 朱玉铭, 等. 超临界二氧化碳闭式布雷顿循环压缩机升速过程实验和模拟[J]. 中国电机工程学报, 2023, 43 (11): 4150- 4160. |
QIN Shuo, LIANG Shiqiang, ZHU Yuming, et al. Experiment and simulation of the speed-up process of supercritical carbon dioxide closed Brayton cycle compressor[J]. Proceedings of the CSEE, 2023, 43 (11): 4150- 4160. | |
20 | 代浩. 超临界二氧化碳循环燃煤发电机组建模与仿真研究[D]. 北京: 华北电力大学, 2022. |
DAI Hao. Research on modeling and simulation of supercritical carbon dioxide cycle coal-fired power generation unit[D]. Beijing: North China Electric Power University, 2022. | |
21 |
MANENTE G, FORTUNA F M. Supercritical CO2 power cycles for waste heat recovery: a systematic comparison between traditional and novel layouts with dual expansion[J]. Energy Conversion and Management, 2019, 197, 111777.
DOI |
22 | CHO S K, KIM M, BAIK S, et al. Investigation of the bottoming cycle for high efficiency combined cycle gas turbine system with supercritical carbon dioxide power cycle[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Quebec, Canada. 2015. |
23 |
WANG D, REN X, ZHANG J K, et al. Comparative investigation on techno-economics of cascade supercritical CO2 combined cycles for waste heat recovery of typical gas turbines[J]. Thermal Science and Engineering Progress, 2023, 42, 101941.
DOI |
24 | 陈豪. 燃气-超临界二氧化碳联合循环系统优化及动态特性研究[D]. 上海: 上海电力大学, 2022. |
CHEN Hao. Optimization and dynamic characteristics of gas supercritical carbon dioxide combined cycle system[D]. Shanghai: Shanghai University of Electric Power, 2022. | |
25 | PITLA S S, ROBINSON D M, GROLL E A, et al. Heat transfer from supercritical carbon dioxide in tube flow: a critical review[J]. HVAC& R Research, 1998, 4 (3): 281- 301. |
[1] | 张永, 尹朝强, 刘宇钢, 张斌, 莫春鸿, 王朝阳. 风煤比对超超临界机组变负荷瞬态特性的影响[J]. 中国电力, 2024, 57(3): 224-232. |
[2] | 程诺, 陈大才, 陈雪, 阮筱菲, 韦舒清, 韩哲宇. 计及联络开关投切的有源配网电流速断保护定值优化方案[J]. 中国电力, 2024, 57(10): 90-101. |
[3] | 戴志辉, 柳梅元, 韦舒清, 朱卫平, 王文卓. 基于超导磁储能的光伏场站送出线路距离保护[J]. 中国电力, 2024, 57(10): 102-114. |
[4] | 冯宝成, 金震, 侯炜, 徐光福. 花瓣型配电网区域备自投系统控制策略优化研究及应用[J]. 中国电力, 2024, 57(1): 244-254. |
[5] | 石文喆, 李冰洁, 尤培培, 张泠. 基于深度强化学习的建筑能源系统优化策略[J]. 中国电力, 2023, 56(6): 114-122. |
[6] | 周文俊, 曹毅, 李杰, 金涛, 陈文剑, 周霞. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87. |
[7] | 曹斌, 苏珂, 原帅, 肖谭南, 陈颖. 基于微分代数神经网络的含新能源区域电网端口动态特性学习方法[J]. 中国电力, 2023, 56(2): 23-31. |
[8] | 陈培育, 崇志强, 李树青, 郗晓光, 李振斌, 王慧媛. 基于二级聚集式的端对端电力交易控制策略[J]. 中国电力, 2022, 55(9): 64-69. |
[9] | 李海涛, 刘北阳, 滕文涛, 李宽, 刘东超, 须雷. 基于可变合闸角的变压器励磁涌流抑制方法[J]. 中国电力, 2022, 55(9): 70-78. |
[10] | 贺彦强, 王英, 陈小强, 陈剑箫. 计及特征次谐波治理的铁路网侧储能系统控制策略[J]. 中国电力, 2022, 55(7): 33-41. |
[11] | 周诗嘉, 杨光源, 彭光强, 武霁阳, 辛清明. 基于多相风力发电系统的容错控制策略研究[J]. 中国电力, 2022, 55(7): 134-141. |
[12] | 曹雅琦, 赵波, 王丽婕, 李相俊, 高彬桓. 基于遗传蚁群的光储电站运行效益提升策略研究[J]. 中国电力, 2022, 55(2): 9-18. |
[13] | 卢嘉豪, 陈思哲. 双边不对称工况下无网侧变换器型可变频率变压器的控制策略[J]. 中国电力, 2021, 54(12): 29-37. |
[14] | 付红军, 陈惠粉, 赵华, 王凯丰, 鲁宗相, 乔颖. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115. |
[15] | 丁明, 施建雄, 韩平平, 林子豪, 张宇. 光储系统参与电网调频及调峰的综合控制策略[J]. 中国电力, 2021, 54(1): 116-123,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||