中国电力 ›› 2024, Vol. 57 ›› Issue (3): 224-232.DOI: 10.11930/j.issn.1004-9649.202302026
• 发电 • 上一篇
张永1(), 尹朝强2, 刘宇钢2, 张斌1, 莫春鸿2, 王朝阳3(
)
收稿日期:
2023-03-07
出版日期:
2024-03-28
发布日期:
2024-03-26
作者简介:
张永(1974—),男,高级工程师,从事火电厂经济运行调整、生产管理相关研究,E-mail:12052797@chnenergy.com.cn基金资助:
Yong ZHANG1(), Chaoqiang YIN2, Yugang LIU2, Bin ZHANG1, Chunhong MO2, Chaoyang WANG3(
)
Received:
2023-03-07
Online:
2024-03-28
Published:
2024-03-26
Supported by:
摘要:
为获得风煤比对燃煤机组变负荷瞬态调峰特性的影响规律,基于660 MW超超临界二次再热燃煤机组动态模型,研究了风煤比对主再热汽温、减温水喷水量及瞬态发电能耗的影响,提出了在不同变负荷速率下汽温控制效果和发电能效的风煤比优化控制方案。结果表明:变负荷瞬态过程中,采用较大的风煤比有利于提高主再热汽温控制效果,但瞬态过程的平均发电煤耗率高。当变负荷速率在1%/min以内时,优先采用较小的风煤比可使机组瞬态过程平均发电煤耗率下降1.2 g/(kW·h);当变负荷速率在2%~3%/min时,优先采用较高的风煤比,可保证主再热汽温偏差控制在10 ℃以内。
张永, 尹朝强, 刘宇钢, 张斌, 莫春鸿, 王朝阳. 风煤比对超超临界机组变负荷瞬态特性的影响[J]. 中国电力, 2024, 57(3): 224-232.
Yong ZHANG, Chaoqiang YIN, Yugang LIU, Bin ZHANG, Chunhong MO, Chaoyang WANG. The Influence of the Air-coal Ratio on Transient Characteristics of the Ultra-supercritical Power Unit during the Load Cycling Processes[J]. Electric Power, 2024, 57(3): 224-232.
工况 | 主汽温/ ℃ | 主汽压/ MPa | 主汽流量/ (kg·s–1) | 给水温度/ ℃ | 给水压力/ MPa | 一再汽温/ ℃ | 一再压力/ MPa | 一再流量/ (kg·s–1) | 二再汽温/ ℃ | 二再压力/ MPa | 二再流量/ (kg·s–1) | |||||||||||
BMCR | 605 | 32.45 | 496.0 | 314 | 36.45 | 623 | 11.05 | 463.5 | 623 | 3.33 | 396.0 | |||||||||||
75%THA | 605 | 23.45 | 341.0 | 303 | 25.52 | 623 | 7.46 | 307.7 | 623 | 2.29 | 269.4 | |||||||||||
50%THA | 605 | 15.57 | 222.3 | 277 | 16.58 | 623 | 4.99 | 204.1 | 623 | 1.55 | 181.8 |
表 1 锅炉各受热面热力参数
Table 1 Thermal parameters of each heat surface in the boiler
工况 | 主汽温/ ℃ | 主汽压/ MPa | 主汽流量/ (kg·s–1) | 给水温度/ ℃ | 给水压力/ MPa | 一再汽温/ ℃ | 一再压力/ MPa | 一再流量/ (kg·s–1) | 二再汽温/ ℃ | 二再压力/ MPa | 二再流量/ (kg·s–1) | |||||||||||
BMCR | 605 | 32.45 | 496.0 | 314 | 36.45 | 623 | 11.05 | 463.5 | 623 | 3.33 | 396.0 | |||||||||||
75%THA | 605 | 23.45 | 341.0 | 303 | 25.52 | 623 | 7.46 | 307.7 | 623 | 2.29 | 269.4 | |||||||||||
50%THA | 605 | 15.57 | 222.3 | 277 | 16.58 | 623 | 4.99 | 204.1 | 623 | 1.55 | 181.8 |
工业分析/% | 元素分析/% | Qar,net/(kJ·kg–1) | ||||||||||||||||
Mar | Aar | Var | FCar | Car | Har | Oar | Nar | Sar | ||||||||||
8.25 | 24.30 | 38.64 | 28.81 | 54.80 | 3.88 | 7.16 | 0.91 | 0.70 | 21430 |
表 2 煤的工业分析和元素分析(收到基)
Table 2 Proximate and ultimate analyses of coal (as received)
工业分析/% | 元素分析/% | Qar,net/(kJ·kg–1) | ||||||||||||||||
Mar | Aar | Var | FCar | Car | Har | Oar | Nar | Sar | ||||||||||
8.25 | 24.30 | 38.64 | 28.81 | 54.80 | 3.88 | 7.16 | 0.91 | 0.70 | 21430 |
工况 | α | |
BMCR | 1.15 | |
75%THA | 1.20 | |
50%THA | 1.40 |
表 3 不同工况下的过量空气系数
Table 3 Excess air coefficient at different work conditions
工况 | α | |
BMCR | 1.15 | |
75%THA | 1.20 | |
50%THA | 1.40 |
1 | 新华社. 习近平主持召开中央财经委员会第九次会议[EB/OL]. (2021-03-15) [2024-01-26]. http://www.gov.cn/xinwen/2021-03/15/content_5593154.htm. |
2 | 周云龙, 杨美, 杨金福, 等. 二次再热燃煤机组疏水梯级预热空气系统研究[J]. 中国电机工程学报, 2022, 42 (S1): 177- 186. |
ZHOU Yunlong, YANG Mei, YANG Jinfu, et al. Study on drainage cascade preheating air system in double reheat coal-fired unit[J]. Proceedings of the CSEE, 2022, 42 (S1): 177- 186. | |
3 | 李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度[J]. 中国电力, 2023, 56 (1): 1- 7, 48. |
LI Xiongwei, WANG Xin, GU Jiawei, et al. Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power[J]. Electric Power, 2023, 56 (1): 1- 7, 48. | |
4 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
5 | 董洁, 乔建强. “双碳” 目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55 (8): 202- 212. |
DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "carbon peaking and carbon neutrality" goal[J]. Electric Power, 2022, 55 (8): 202- 212. | |
6 | 李祥勇, 吴昕, 庞春凤, 等. 两种灵活性改造技术的热电特性对比研究[J]. 中国电力, 2023, 56 (4): 192- 200. |
LI Xiangyong, WU Xin, PANG Chunfeng, et al. Comparative study of thermoelectric characteristics of two flexibility transformation technologies[J]. Electric Power, 2023, 56 (4): 192- 200. | |
7 | 国家发展改革委, 国家能源局. 关于印发《“十四五”现代能源体系规划》的通知[EB/OL]. (2022-03-22) [2024-01-26]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220322_1320016.html. |
8 | 谢天, 梁凌, 张婷, 等. 火电机组瞬态特性研究现状综述[J]. 中国电机工程学报, 2020, 40 (19): 6238- 6245. |
XIE Tian, LIANG Ling, ZHANG Ting, et al. Status quo in research on transient characteristics of thermal power unit[J]. Proceedings of the CSEE, 2020, 40 (19): 6238- 6245. | |
9 | 赵征, 于悦波, 孙昊天. 基于凝结水节流的新型协调优化控制策略[J]. 动力工程学报, 2021, 41 (2): 107- 112, 128. |
ZHAO Zheng, YU Yuebo, SUN Haotian. Optimization of a new coordinated control strategy based on condensate throttling[J]. Journal of Chinese Society of Power Engineering, 2021, 41 (2): 107- 112, 128. | |
10 |
RICHTER M, OELJEKLAUS G, GÖRNER K. Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage[J]. Applied Energy, 2019, 236, 607- 621.
DOI |
11 |
崔晓宁, 赵志刚, 姜宁, 等. 1000 MW超超临界二次再热锅炉系统㶲分析[J]. 动力工程学报, 2019, 39 (8): 605- 610, 617.
DOI |
CUI Xiaoning, ZHAO Zhigang, JIANG Ning, et al. Exergy analysis of a 1000 MW ultra-supercritical double reheat boiler unit[J]. Journal of Chinese Society of Power Engineering, 2019, 39 (8): 605- 610, 617.
DOI |
|
12 | 姚丽萍. 超超临界二次再热机组热力系统优化与控制研究[D]. 南京: 东南大学, 2021. |
YAO Liping. Study on optimization and control of thermal system of ultra-supercritical secondary reheat unit [D]. Nanjing: Southeast University, 2021. | |
13 | 蔡宝玲, 高海东, 王剑钊, 等. 二次再热超超临界机组动态特性分析及控制策略验证[J]. 中国电机工程学报, 2016, 36 (19): 5288- 5299, 5411. |
CAI Baoling, GAO Haidong, WANG Jianzhao, et al. Dynamic process characteristic analysis and control strategy verification on double-reheat ultra-supercritical coal-fired power units[J]. Proceedings of the CSEE, 2016, 36 (19): 5288- 5299, 5411. | |
14 |
WU X, SHEN J, LI Y G, et al. Fuzzy modeling and predictive control of power plant steam temperature system[J]. IFAC, 2015, 48 (30): 397- 402.
DOI |
15 |
WU X, SHEN J, LI Y G, et al. Fuzzy modeling and predictive control of superheater steam temperature for power plant[J]. ISA Transactions, 2015, 56, 241- 251.
DOI |
16 |
FAN H J, XU W, ZHANG J, et al. Steam temperature regulation characteristics in a flexible ultra-supercritical boiler with a double reheat cycle based on a cell model[J]. Energy, 2021, 229, 120701.
DOI |
17 |
YU J X, PETERSEN N, LIU P, et al. Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development[J]. Energy, 2022, 260, 125088.
DOI |
18 |
GUO S S, LIU P, LI Z. Data reconciliation for the overall thermal system of a steam turbine power plant[J]. Applied Energy, 2016, 165, 1037- 1051.
DOI |
19 |
WANG C Y, QIAO Y Q, LIU M, et al. Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler[J]. Applied Energy, 2020, 260, 114341.
DOI |
20 |
WANG C Y, LIU Z F, FAN M Y, et al. Enhancing the flexibility and efficiency of a double-reheat coal-fired power unit by optimizing the steam temperature control: from simulation to application[J]. Applied Thermal Engineering, 2022, 217, 119240.
DOI |
21 | 董竹林, 牛玉广, 董恩伏, 等. 适应火电机组灵活运行的滑压曲线优化方法[J]. 动力工程学报, 2020, 40 (3): 256- 264. |
DONG Zhulin, NIU Yuguang, DONG Enfu, et al. Sliding pressure curve optimization for flexible operation of thermal power units[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (3): 256- 264. | |
22 |
WANG P, SI F Q, CAO Y, et al. Prediction of superheated steam temperature for thermal power plants using a novel integrated method based on the hybrid model and attention mechanism[J]. Applied Thermal Engineering, 2022, 203, 117899.
DOI |
23 | KIM H, KIM E K, KIM J, et al. Prediction-based feedforward control of superheated steam temperature of a power plant[J]. International Journal of Electrical Power & Energy Systems, 2015, 71, 351- 357. |
24 |
WANG C Y, ZHAO Y L, LIU M, et al. Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio[J]. Applied Energy, 2018, 216, 212- 223.
DOI |
25 | 谷俊杰, 杨智, 任晏伶, 等. 再热器喷水减温对机组煤耗率的影响研究[J]. 华北电力大学学报(自然科学版), 2011, 38 (1): 103- 106. |
GU Junjie, YANG Zhi, REN Yanling, et al. Influence study of water spraying in reheaters desuperheating on unit coal consumption[J]. Journal of North China Electric Power University (Natural Science Edition), 2011, 38 (1): 103- 106. |
[1] | 万明元, 任鑫, 王渡, 金亚飞, 王志刚, 王廷举, 杨昌宏, 刘昊坤. 100 MW级联式S-CO2循环动态特性研究[J]. 中国电力, 2024, 57(12): 169-177. |
[2] | 张顺, 闫培飞, 姚洪宇, 李生鹏, 曹士保, 高亚洲. 亚临界汽包炉深度调峰安全性评估及控制优化技术[J]. 中国电力, 2020, 53(7): 203-210. |
[3] | 丁建良, 于国强, 罗建裕. 深度调峰下超超临界机组再热汽温控制优化[J]. 中国电力, 2020, 53(5): 143-149. |
[4] | 杨文虎. 1 350 MW超超临界汽轮机技术特点及分析[J]. 中国电力, 2020, 53(1): 162-168,176. |
[5] | 吕培鑫, 庞力平, 李明, 段立强, 杨勇平. 太阳能辅助燃煤发电系统变工况动态特性分析[J]. 中国电力, 2019, 52(7): 108-116. |
[6] | 段立强, 王婧, 庞力平, 种道彤, 俞基安, 刁保圣, 吕春俊. 二次再热机组高效灵活发电创新理论与方法[J]. 中国电力, 2019, 52(5): 1-12. |
[7] | 王珠, 韩翔, 许立环, 赵永亮, 种道彤. 一次调频参数对超超临界二次再热机组性能的影响[J]. 中国电力, 2019, 52(5): 54-62. |
[8] | 许威, 张剑, 范浩杰, 张忠孝, 孙蔚婷. 宽负荷下灵活二次再热超超临界锅炉调温特性研究[J]. 中国电力, 2019, 52(4): 119-126. |
[9] | 莫春鸿, 刘宇钢, 王冬平, 杨华春, 潘绍成, 易广宙. 更高参数二次再热超超临界锅炉关键技术探讨[J]. 中国电力, 2018, 51(9): 73-77,157. |
[10] | 邓攀, 王亚军. BEST技术用于超超临界二次再热机组的可行性分析[J]. 中国电力, 2018, 51(7): 84-89. |
[11] | 徐星, 谭锐, 李永生, 蔡培, 黄启龙, 马晓峰. 1 000 MW超超临界二次再热机组一次调频方式分析[J]. 中国电力, 2018, 51(2): 169-175. |
[12] | 牛海明, 邱忠昌, 黄焕袍. 1 000 MW二次再热超超临界机组再热汽温控制策略及工程应用[J]. 中国电力, 2017, 50(9): 138-142. |
[13] | 王林, 刘辉, 刘超, 高景辉, 赵志丹, 王红雨, 孟颖琪. 二次再热机组锅炉三段吹管技术研究[J]. 中国电力, 2017, 50(7): 69-73. |
[14] | 崔青汝, 牛海明. 1 000 MW二次再热火电机组主蒸汽温度控制策略及工程应用[J]. 中国电力, 2017, 50(6): 27-31. |
[15] | 黄焕袍, 阳光, 崔青汝. 1 000 MW二次再热超超临界机组分散控制系统关键技术研究及应用[J]. 中国电力, 2017, 50(6): 21-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||