[1] 国家能源局. 2018年风电并网运行情况[EB/OL]. (2019-01-28)[2019-06-04]. http://www.nea.gov.cn/2019-01/28/c_137780779.htm. [2] 国家能源局. 2018年光伏发电统计信息[EB/OL]. (2019-03-19)[2019-06-04]. http://www.nea.gov.cn/2019-03/19/c_137907428.htm. [3] 崔杨, 陈正洪, 成驰. 光伏发电功率预测预报系统升级方案设计及关键技术实现[J]. 中国电力, 2014, 47(10): 142–147 CUI Yang, CHEN Zhenghong, CHENG Chi, et al. Upgrade of the PV power prediction system and the implementation of the key technologies[J]. Electric Power, 2014, 47(10): 142–147 [4] 王尤嘉, 鲁宗相, 乔颖, 等. 基于特征聚类的区域风电短期功率统计升尺度预测[J]. 电网技术, 2017, 41(5): 1383–1389 WANG Youjia, LU Zongxiang, QIAO Ying, et al. Short-term regional wind power statistical upscaling forecasting based on feature clustering[J]. Power System Technology, 2017, 41(5): 1383–1389 [5] 张小萌, 白恺, 柳玉, 等. 大规模分布式光伏短期集群功率预测综述[J]. 华北电力技术, 2017(6): 1–7 ZHANG Xiaomeng, BAI Kai, LIU Yu, et al. Overview for large-scale distributed photovoltaic power prediction with clustered method[J]. North China Electric Power, 2017(6): 1–7 [6] SHI B, WU Y, ZHU X, et al. Research on wind power prediction considering the correlation of regional multiple wind farms[C]//2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference(APPEEC), Hong Kong, 2014: 1-5. [7] LOBO M G, SANCHEZ I. Regional wind power forecasting based on smoothing techniques, with application to the Spanish peninsular system[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1990–1997. [8] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315–6326 PENG Xiaosheng, XIONG Lei, WEN Jinyu, et al. A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36(23): 6315–6326 [9] 陈颖, 孙荣富, 吴志坚, 等. 基于统计升尺度方法的区域风电场群功率预测[J]. 电力系统自动化, 2013, 37(7): 1–5 CHEN Ying, SUN Rongfu, WU Zhijian, et al. A regional wind power forecasting method based on statistical upscaling approach[J]. Automation of Electric Power Systems, 2013, 37(7): 1–5 [10] 别朝红, 安佳坤, 陈筱中, 等. 一种考虑时空分布特性的区域风电功率预测方法[J]. 西安交通大学学报, 2013, 47(10): 68–74 BIE Zhaohong, AN Jiakun, CHEN Xiaozhong, et al. Regional wind power prediction considering temporal and spatial characteristics[J]. Journal of Xi'an Jiaotong University, 2013, 47(10): 68–74 [11] 林芳, 林焱, 吕宪龙, 等. 基于均衡KNN算法的电力负荷短期并行预测[J]. 中国电力, 2018, 51(10): 88–94, 102 LIN Fang, LIN Yan, LV Xianlong, et al. Short-term parallel power load forecasting based on balanced KNN[J]. Electric Power, 2018, 51(10): 88–94, 102 [12] 张军伟, 王念滨, 黄少滨, 等. 二分K均值聚类算法优化及并行化研究[J]. 计算机工程, 2011, 37(17): 23–25 ZHANG Junwei, WANG Nianbin, HUANG Shaobin, et al. Research on bisecting K-means clustering algorithm optimization and parallelism[J]. Computer Engineering, 2011, 37(17): 23–25 [13] 郭艳飞, 程林, 李洪涛, 等. 基于支持向量机和互联网信息修正的空间负荷预测方法[J]. 中国电力, 2019, 52(4): 80–88 GUO Yanfei, CHENG Lin, LI Hongtao, et al. Spatial load forecasting method based on support vector machine and internet information correction[J]. Electric Power, 2019, 52(4): 80–88 [14] 王勃, 刘纯, 冯双磊. 基于集群划分的短期风电功率预测方法[J]. 高电压技术, 2018, 44(4): 1254–1260 WANG Bo, LIU Chun, FENG Shuanglei. Prediction method for short-term wind power based on wind farm clusters[J]. High Voltage Engineering, 2018, 44(4): 1254–1260 [15] SIEBERT N. Development of methods for regional wind power forecasting[D]. Paris: École Nationale Supérieure des Mines de Paris, 2008. [16] 渠慎明, 王青博, 刘珊, 等. 基于二分K均值聚类和最近特征线的视频超分辨率重建方法[J]. 河南大学学报(自然科学版), 2018, 48(3): 292–298 QU Shenming, WANG Qingbo, LIU Shan, et al. Video super resolution reconstruction method based on bisecting K-means clustering and nearest feature line[J]. Journal of Henan University(Natural Science Edition), 2018, 48(3): 292–298 [17] 崔杨, 陈正洪, 孙朋杰. 弃光限电条件下不同纬度地区短期光伏发电功率预测对比分析[J]. 太阳能学报, 2018, 39(6): 1610–1618 CUI Yang, CHEN Zhenghong, SUN Pengjie. Comparison and analysis of short-term PV power prediction at different latitude under condition of discarding PV power[J]. Acta Energiae Solaris Sinica, 2018, 39(6): 1610–1618 [18] 崔杨, 陈正洪, 刘丽珺. 弃风限电条件下复杂地形风电场短期风功率预测对比分析[J]. 太阳能学报, 2017, 38(12): 3376–3384 CUI Yang, CHEN Zhenghong, LIU Lijun. Short-term wind power prediction analysis of complicated topography in abandoned wind power conditions[J]. Acta Energiae Solaris Sinica, 2017, 38(12): 3376–3384 [19] 梁允, 许沛华, 孙芊, 等. 基于滚动的BP神经网络的光伏发电功率预报[J]. 水电能源科学, 2017, 35(9): 212–214 LIANG Yun, XU Peihua, SUN Qian, et al. Photovoltaic power forecast based on rolling BP neural network[J]. Water Resources and Power, 2017, 35(9): 212–214 [20] 高大启. 有教师的线性基本函数前向三层神经网络结构研究[J]. 计算机学报, 1998, 21(1): 80–86 GAO Daqi. On structures of supervised linear basis function feed forward three-layered neural networks[J]. Chinese Journal of Computers, 1998, 21(1): 80–86
|