中国电力 ›› 2025, Vol. 58 ›› Issue (4): 56-67.DOI: 10.11930/j.issn.1004-9649.202411044

• 风电机组暂态运行控制与试验验证关键技术 • 上一篇    下一篇

考虑多领域耦合特性的风电机组一次调频动态建模与仿真

季湛洋1,2(), 胡阳1,2(), 孔令行3, 宋子秋1,2, 邓丹2, 刘吉臻1,2   

  1. 1. 新能源电力系统全国重点实验室(华北电力大学),北京 102206
    2. 华北电力大学 控制与计算机工程学院,北京 102206
    3. 中国电力科学研究院有限公司,北京 100192
  • 收稿日期:2024-11-12 录用日期:2025-02-10 发布日期:2025-04-23 出版日期:2025-04-28
  • 作者简介:
    季湛洋(2000),男,硕士研究生,从事风力发电系统研究,E-mail:18261055772@163.com
    胡阳(1986),男,通信作者,副教授,博士,从事新能源电力系统建模与控制研究,E-mail:hooyoung@ncepu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(考虑安全约束的电网故障过程风电机组机电耦合机理及控制方法研究,4000-202355454A-3-2-ZN)。

Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics

JI Zhanyang1,2(), HU Yang1,2(), KONG Lingxing3, SONG Ziqiu1,2, DENG Dan2, LIU Jizhen1,2   

  1. 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China
    2. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    3. China Electric Power Research Institute, Beijing 100192, China
  • Received:2024-11-12 Accepted:2025-02-10 Online:2025-04-23 Published:2025-04-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Electromechanical Coupling Mechanism and Control Method of Wind Turbine During Grid Fault Considering Security Constraints, No.4000-202355454A-3-2-ZN).

摘要:

风电机组快速调频过程中,暂态有功释放会诱发气动、传动和塔筒等部件载荷波动。为了合理表征其波动特性并服务于调频控制优化,提出了一种计及叶片、主轴、发电机、控制等多领域耦合特性的风电机组快速调频动态建模方法。首先,提出风电场-机协同的一次调频控制策略,基于标准的5 MW风电机组精细化模型,搭建了额定风速以下、以上机组级快速调频控制器;然后,采用斯皮尔曼相关性分析算法选定输入、输出变量,计及输入、输出延迟阶次,完成了支持额定风速以上、以下运行区域自适应识别、切换的运行域划分。然后,基于离散工况仿真运行数据的均衡抽样,通过物理先验信息指导,分别采用子空间辨识、深度神经网络算法进行了全工况下机组一次调频动态的多输入-多输出建模与仿真验证。结果表明,所获取的状态空间模型具有良好的可解释性,但是模型结构决定了其仅具备有限的逼近精度;相比之下,时序神经网络模型具有更好的动态特性捕捉能力,可为后续机组一次调频优化控制奠定良好的模型基础。

关键词: 风电机组, 一次调频, 载荷动态, LSTM神经网络, 子空间辨识

Abstract:

During the rapid frequency regulation process of wind turbine units, the transient active power release can induce load fluctuations in aerodynamic, transmission, and tower components. In order to reasonably characterize the fluctuation characteristics and serve the optimization of frequency regulation control, this paper presents a fast dynamic modeling method for wind turbine units that takes into account the coupling characteristics of blades, main shaft, generator, and control systems. Firstly, a wind farm-turbine coordinated primary frequency regulation control strategy is set up, and a rapid frequency regulation controller at the unit level is developed for both below and above the rated wind speed based on a refined 5MW wind turbine model. And then, the Spilman correlation analysis algorithm is used to select input and output variables with consideration of input and output delay orders, and the operational domain partitioning is completed, enabling adaptive identification and switching between operation regions both above and below the rated wind speed. Thirdly, based on balanced sampling of simulation operating data under discrete operating conditions, and guided by physical prior information, subspace identification and deep neural network algorithms are employed to conduct multi-input-multi-output modeling and simulation verification of the unit's primary frequency modulation dynamics across the full range of operating conditions. The results show that the state space model obtained has good interpretability, but the model structure inherently limits its approximation accuracy to a finite degree; in comparison, the temporal neural network model demonstrates a better ability to capture dynamic characteristics, providing a robust model foundation for subsequent optimization control of the unit's primary frequency modulation.

Key words: wind turbine unit, primary frequency regulation, load dynamics, LSTM neural network, subspace identification