中国电力 ›› 2025, Vol. 58 ›› Issue (4): 56-67.DOI: 10.11930/j.issn.1004-9649.202411044
• 风电机组暂态运行控制与试验验证关键技术 • 上一篇 下一篇
季湛洋1,2(), 胡阳1,2(
), 孔令行3, 宋子秋1,2, 邓丹2, 刘吉臻1,2
收稿日期:
2024-11-12
录用日期:
2025-02-10
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
JI Zhanyang1,2(), HU Yang1,2(
), KONG Lingxing3, SONG Ziqiu1,2, DENG Dan2, LIU Jizhen1,2
Received:
2024-11-12
Accepted:
2025-02-10
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
风电机组快速调频过程中,暂态有功释放会诱发气动、传动和塔筒等部件载荷波动。为了合理表征其波动特性并服务于调频控制优化,提出了一种计及叶片、主轴、发电机、控制等多领域耦合特性的风电机组快速调频动态建模方法。首先,提出风电场-机协同的一次调频控制策略,基于标准的5 MW风电机组精细化模型,搭建了额定风速以下、以上机组级快速调频控制器;然后,采用斯皮尔曼相关性分析算法选定输入、输出变量,计及输入、输出延迟阶次,完成了支持额定风速以上、以下运行区域自适应识别、切换的运行域划分。然后,基于离散工况仿真运行数据的均衡抽样,通过物理先验信息指导,分别采用子空间辨识、深度神经网络算法进行了全工况下机组一次调频动态的多输入-多输出建模与仿真验证。结果表明,所获取的状态空间模型具有良好的可解释性,但是模型结构决定了其仅具备有限的逼近精度;相比之下,时序神经网络模型具有更好的动态特性捕捉能力,可为后续机组一次调频优化控制奠定良好的模型基础。
季湛洋, 胡阳, 孔令行, 宋子秋, 邓丹, 刘吉臻. 考虑多领域耦合特性的风电机组一次调频动态建模与仿真[J]. 中国电力, 2025, 58(4): 56-67.
JI Zhanyang, HU Yang, KONG Lingxing, SONG Ziqiu, DENG Dan, LIU Jizhen. Dynamic Modeling and Simulation of Wind Turbine Unit Primary Frequency Regulation Considering Multi-domain Coupling Characteristics[J]. Electric Power, 2025, 58(4): 56-67.
参数 | 量值 | |
额定功率/MW | 5 | |
切入风速/(m·s–1) | 3 | |
额定风速/(m·s–1) | 12 | |
切出风速/(m·s–1) | 25 | |
发电机惯性时间 τg/s | 0.1 | |
额定转子转速 ωg/(r·min–1) | ||
风轮半径 R/m | 63 | |
发电机效率 η/% | 94.4 |
表 1 NREL 5 MW风电机组关键参数
Table 1 Key parameters of NREL 5 MW wind turbine
参数 | 量值 | |
额定功率/MW | 5 | |
切入风速/(m·s–1) | 3 | |
额定风速/(m·s–1) | 12 | |
切出风速/(m·s–1) | 25 | |
发电机惯性时间 τg/s | 0.1 | |
额定转子转速 ωg/(r·min–1) | ||
风轮半径 R/m | 63 | |
发电机效率 η/% | 94.4 |
聚类数 | 轮廓系数 | 方差比标准 | DBI值 | |||
2 | 0.988 | 0.126 | ||||
3 | 0.769 | 999.3 | 0.601 | |||
4 | 0.836 | 0.390 | ||||
5 | 0.751 | 0.492 |
表 2 运行域划分评价指标
Table 2 Evaluation indexes of running domain division
聚类数 | 轮廓系数 | 方差比标准 | DBI值 | |||
2 | 0.988 | 0.126 | ||||
3 | 0.769 | 999.3 | 0.601 | |||
4 | 0.836 | 0.390 | ||||
5 | 0.751 | 0.492 |
输出量 | 子空间系统辨识方法 | LSTM神经网络 | ||||||||
EMS/10–5 | EMA/10–3 | EMS/10–5 | EMA/10–3 | |||||||
额定风速以上 | ωg | 0.334 | 4.40 | 0.290 | 3.61 | |||||
Tm | 15.2 | 30.9 | 0.873 | 6.9 | ||||||
Mtwr | 22.3 | 37.9 | 0.382 | 4.36 | ||||||
Mroot | 251 | 41.8 | 0.134 | 3.08 | ||||||
额定风速以下 | ωg | 0.426 | 5.72 | 0.959 | 7.54 | |||||
Tm | 0.120 | 2.61 | 0.260 | 3.49 | ||||||
Mtwr | 0.471 | 5.63 | 0.134 | 2.98 | ||||||
Mroot | 7.86 | 24.1 | 0.526 | 6.21 |
表 3 建模效果评价指标
Table 3 Evaluation indexes of modeling effect
输出量 | 子空间系统辨识方法 | LSTM神经网络 | ||||||||
EMS/10–5 | EMA/10–3 | EMS/10–5 | EMA/10–3 | |||||||
额定风速以上 | ωg | 0.334 | 4.40 | 0.290 | 3.61 | |||||
Tm | 15.2 | 30.9 | 0.873 | 6.9 | ||||||
Mtwr | 22.3 | 37.9 | 0.382 | 4.36 | ||||||
Mroot | 251 | 41.8 | 0.134 | 3.08 | ||||||
额定风速以下 | ωg | 0.426 | 5.72 | 0.959 | 7.54 | |||||
Tm | 0.120 | 2.61 | 0.260 | 3.49 | ||||||
Mtwr | 0.471 | 5.63 | 0.134 | 2.98 | ||||||
Mroot | 7.86 | 24.1 | 0.526 | 6.21 |
1 | 中国电力行业年度发展报告2023(摘要)[N]. 中国电力报, 2023-07-12(3). |
2 | 刘洪波, 彭晓宇, 张崇, 等. 风电参与电力系统调频控制策略综述[J]. 电力自动化设备, 2021, 41 (11): 81- 92. |
LIU Hongbo, PENG Xiaoyu, ZHANG Chong, et al. Overview of wind power participating in frequency regulation control strategy for power system[J]. Electric Power Automation Equipment, 2021, 41 (11): 81- 92. | |
3 |
YANG J, ZHENG S Y, SONG D R, et al. Comprehensive optimization for fatigue loads of wind turbines in complex-terrain wind farms[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (2): 909- 919.
DOI |
4 |
YAO Q, HU Y, ZHAO T Y, et al. Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC[J]. Renewable Energy, 2022, 183, 423- 434.
DOI |
5 | 李可心, 安军, 石岩, 等. 基于可用调频能量的风电机组综合虚拟惯性控制参数整定[J]. 电工技术学报, 2025, 40 (5): 1382- 1394. |
LI Kexin, AN Jun, SHI Yan, et al. An integrated virtual inertia control parameter setting method for wind turbine based on available frequency regulation energy[J]. Transactions of China Electrotechnical Society, 2025, 40 (5): 1382- 1394. | |
6 | 高海淑, 张峰, 丁磊. 风电机组两分段下垂调频控制策略及参数整定方法[J]. 电力系统自动化, 2023, 47 (18): 111- 121. |
GAO Haishu, ZHANG Feng, DING Lei. Two-segment droop frequency regulation control strategy and parameter setting method for wind turbines[J]. Automation of Electric Power Systems, 2023, 47 (18): 111- 121. | |
7 | 赵晶晶, 杜明, 刘帅, 等. 基于模型预测控制的双馈风电机组调频与转子转速恢复策略[J]. 中国电力, 2023, 56 (6): 11- 17. |
ZHAO Jingjing, DU Ming, LIU Shuai, et al. Frequency modulation and rotor speed recovery strategy of doubly-fed induction generator based on model predictive control[J]. Electric Power, 2023, 56 (6): 11- 17. | |
8 | 宋子秋, 余照国, 胡阳, 等. 海上漂浮式风电场高比例并网一次调频控制策略研究[J]. 动力工程学报, 2023, 43 (1): 92- 101. |
SONG Ziqiu, YU Zhaoguo, HU Yang, et al. Research on primary frequency regulation control strategy of high-penetration offshore floating wind farm[J]. Journal of Chinese Society of Power Engineering, 2023, 43 (1): 92- 101. | |
9 | 秦世耀. 风电机组惯量及一次调频优化控制研究[D]. 南京: 东南大学, 2021. |
QIN Shiyao. Research on optimal control strategy of inertia and primary frequency regulation for wind turbines[D]. Nanjing: Southeast University, 2021. | |
10 | 尹诗, 侯国莲, 迟岩, 等. 风电机组发电机前轴承健康度预测方法及实现[J]. 系统仿真学报, 2021, 33 (6): 1323- 1333. |
YIN Shi, HOU Guolian, CHI Yan, et al. Prediction method for health degree of front bearing of wind turbine generator and implementation[J]. Journal of System Simulation, 2021, 33 (6): 1323- 1333. | |
11 | 孟明, 杨靖, 彭琰, 等. 计及频率响应安全性的双馈风电机组轴系阻尼控制策略研究[J]. 浙江电力, 2023, 42 (2): 43- 49. |
MENG Ming, YANG Jing, PENG Yan, et al. Research on a shaft damping control strategy for DFIG-based wind turbines considering frequency response safety[J]. Zhejiang Electric Power, 2023, 42 (2): 43- 49. | |
12 | 刘海军, 陈重阳. 双馈风电机组低电压穿越下载荷控制研究[J]. 电气传动, 2019, 49 (2): 33- 39. |
LIU Haijun, CHEN Chongyang. Research on load control strategy of DFIG wind turbine during LVRT[J]. Electric Drive, 2019, 49 (2): 33- 39. | |
13 | 田德, 黄明月, 唐世泽, 等. 大型风电机组输出功率与塔架载荷自抗扰控制[J]. 太阳能学报, 2023, 44 (5): 466- 472. |
TIAN De, HUANG Mingyue, TANG Shize, et al. Output power and tower load control of large-scale wind turbines based on active disturbance rejection control[J]. Acta Energiae Solaris Sinica, 2023, 44 (5): 466- 472. | |
14 | 易怀洋, 梁辉, 晋永荣. 基于FAST的大型风电机组叶根载荷反馈独立变桨距控制策略[J]. 科学技术创新, 2022, (27): 89- 92. |
YI Huaiyang, LIANG Hui, JIN Yongrong. Blade root load feedback individual pitch control strategy for large-scale wind turbines based on FAST[J]. Scientific and Technological Innovation, 2022, (27): 89- 92. | |
15 | 李世春, 黄悦华, 王凌云, 等. 基于转速控制的双馈风电机组一次调频辅助控制系统建模[J]. 中国电机工程学报, 2017, 37 (24): 7077- 7086, 7422. |
LI Shichun, HUANG Yuehua, WANG Lingyun, et al. Modeling primary frequency regulation auxiliary control system of doubly fed induction generator based on rotor speed control[J]. Proceedings of the CSEE, 2017, 37 (24): 7077- 7086, 7422. | |
16 |
杨超, 李东翰, 雷显帅, 等. 虚拟惯量控制对直驱风电机组载荷影响的分析及评估[J]. 电力系统自动化, 2024, 48 (7): 258- 266.
DOI |
YANG Chao, LI Donghan, LEI Xianshuai, et al. Analysis and evaluation of impact of virtual inertia control on load of direct-drive wind turbine[J]. Automation of Electric Power Systems, 2024, 48 (7): 258- 266.
DOI |
|
17 |
NOVAES MENEZES E J, ARAÚJO A M, ROHATGI J S, et al. Active load control of large wind turbines using state-space methods and disturbance accommodating control[J]. Energy, 2018, 150, 310- 319.
DOI |
18 | 潘晨阳, 胡阳, 奚芸华. 大型风机主导机械动态的智能灰箱建模及其线性状态空间表征[J]. 控制理论与应用, 2020, 37 (6): 1260- 1269. |
PAN Chenyang, HU Yang, XI Yunhua. Intelligent grey-box modeling and linear state-space representation of dominating mechanical dynamics for large-scale wind turbine[J]. Control Theory & Applications, 2020, 37 (6): 1260- 1269. | |
19 | 梁宏涛, 孔翎超, 刘国柱, 等. 融合数字孪生的风电机组故障检测ASL-CatBoost方法[J]. 系统仿真学报, 2024, 36 (4): 873- 887. |
LIANG Hongtao, KONG Lingchao, LIU Guozhu, et al. ASL-CatBoost method for wind turbine fault detection integrated with digital twin[J]. Journal of System Simulation, 2024, 36 (4): 873- 887. | |
20 | 胡阳, 王蔚然, 房方, 等. 风电机组运行动态数字孪生建模及半物理仿真[J]. 系统仿真学报, 2024, 36 (3): 636- 648. |
HU Yang, WANG Weiran, FANG Fang, et al. Dynamic digital twin modelling and semi-physical simulation of wind turbine operation[J]. Journal of System Simulation, 2024, 36 (3): 636- 648. | |
21 | 杨晓峰, 方逸航, 赵鹏臻, 等. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56 (6): 158- 166, 175. |
YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, et al. State recognition of wind turbines based on K-means and BPNN[J]. Electric Power, 2023, 56 (6): 158- 166, 175. | |
22 | 许扬, 蔡安民, 张林伟, 等. 基于BP神经网络和多因素权重法的风电机组载荷预测和分析[J]. 热力发电, 2022, 51 (8): 42- 49. |
XU Yang, CAI Anmin, ZHANG Linwei, et al. Load prediction and analysis of wind turbine based on BP neural network and multi-factor weight method[J]. Thermal Power Generation, 2022, 51 (8): 42- 49. | |
23 | 邓子豪, 李录平, 刘瑞, 等. 基于SCADA数据特征提取的风电机组偏航齿轮箱故障诊断方法研究[J]. 动力工程学报, 2021, 41 (1): 43- 50. |
DENG Zihao, LI Luping, LIU Rui, et al. Research on diagnosis method of wind turbine yaw gearbox based on SCADA data feature extraction[J]. Journal of Chinese Society of Power Engineering, 2021, 41 (1): 43- 50. | |
24 | 魏乐, 胡晓东, 尹诗. 基于优化XGBoost的风电机组发电机前轴承故障预警[J]. 系统仿真学报, 2021, 33 (10): 2335- 2343. |
WEI Le, HU Xiaodong, YIN Shi. Optimized-XGBoost early warning of wind turbine generator front bearing fault[J]. Journal of System Simulation, 2021, 33 (10): 2335- 2343. | |
25 | 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44 (15): 103- 111. |
JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of Electric Power Systems, 2020, 44 (15): 103- 111. | |
26 | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009, (February): 1- 75. |
27 | 刘兴, 王艳, 纪志成. 基于随机森林的风电功率短期预测方法[J]. 系统仿真学报, 2021, 33 (11): 2606- 2614. |
LIU Xing, WANG Yan, JI Zhicheng. Short-term wind power prediction method based on random forest[J]. Journal of System Simulation, 2021, 33 (11): 2606- 2614. | |
28 | COSTA A G, MALDONADO J L B, ROMERO F A, et al. N4SID method applied to obtain a discrete-time linear state space system as a mathematical model of a jaw crusher prototype[C]//2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). Pucon. IEEE, 2017: 1–6. |
29 | JONKMAN B J, BUHL M L J. Turbsim user's guide[R], Office of Scientific and Technical Information (OSTI), 2006. |
[1] | 王晓东, 李清, 付德义, 刘颖明, 王若瑾. 基于卷积双向长短期记忆网络的风电机组传动系统疲劳载荷预测[J]. 中国电力, 2025, 58(4): 90-97. |
[2] | 田刚领, 武鸿鑫, 李娟, 张柳丽, 谢佳, 李爱魁. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57(9): 247-256. |
[3] | 李丹, 秦世耀, 李少林, 贺敬. 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识[J]. 中国电力, 2024, 57(8): 75-84. |
[4] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[5] | 胡英杰, 李强, 李群. 考虑容量限制的构网型光储系统惯量与一次调频参数优化配置方法[J]. 中国电力, 2024, 57(10): 115-122. |
[6] | 赵晶晶, 杜明, 刘帅, 李梓博, 马闻鹤. 基于模型预测控制的双馈风电机组调频与转子转速恢复策略[J]. 中国电力, 2023, 56(6): 11-17. |
[7] | 李博浩, 郭昆丽, 吕家君, 蔡维正, 刘璐豪, 刘凤仪, 郝翊帆. 弱电网下改进LADRC抑制直驱风机次同步振荡研究[J]. 中国电力, 2023, 56(4): 56-67. |
[8] | 李建华, 曹路, 杨仁炘, 邓桢彦, 李征, 蔡旭. 华东沿海风电场群电网主动频率支撑策略[J]. 中国电力, 2023, 56(11): 49-58, 112. |
[9] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[10] | 马海飞, 滕伟, 彭迪康, 柳亦兵, 靳涛. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J]. 中国电力, 2023, 56(10): 71-79. |
[11] | 王磊, 柳亦兵, 滕伟, 黄心伟, 刘剑韬. 风电机组叶片无损检测技术研究与进展[J]. 中国电力, 2023, 56(10): 80-95. |
[12] | 吴宇辉, 张扬帆, 高峰, 王玙, 王耀函, 杨伟新, 张鸿. 基于工作模态分析的风电机组叶片裂纹损伤在线监测研究[J]. 中国电力, 2023, 56(10): 106-114. |
[13] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[14] | 张嘉诚, 夏向阳, 邓子豪, 陈贵全. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55(2): 19-27. |
[15] | 方日升, 林耀东, 江伟, 黄霆, 徐振华, 吴丹岳, 陈志, 苏毅, 林济铿. 调速侧电力系统稳定器优化设计方法[J]. 中国电力, 2021, 54(9): 74-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||