中国电力 ›› 2025, Vol. 58 ›› Issue (8): 94-102.DOI: 10.11930/j.issn.1004-9649.202412081

• 新能源与储能 • 上一篇    下一篇

基于注意力机制和RCN-BiLSTM融合的风电机组故障识别

陈小乾(), 尹亮(), 展宗辉, 王放, 李旭涛   

  1. 国网宁夏电力有限公司电力科学研究院,宁夏 银川 750002
  • 收稿日期:2024-12-19 发布日期:2025-08-26 出版日期:2025-08-28
  • 作者简介:
    陈小乾(1992),女,通信作者,硕士,工程师,从事风电机组故障诊断和识别研究,E-mail:15595027980@163.com
    尹亮(1986),男,高级工程师,从事故障诊断和识别研究, E-mail:15595199668@163.com
  • 基金资助:
    宁夏自然科学基金资助项目(2024AAC03755)。

Fault Identification for Wind Turbine Based on Attention Mechanism and RCN-BiLSTM Fusion

CHEN Xiaoqian(), YIN Liang(), ZHAN Zonghui, WANG Fang, LI Xutao   

  1. Power Science Research Institute of State Grid Ningxia Power Co., Ningxia 750002, China
  • Received:2024-12-19 Online:2025-08-26 Published:2025-08-28
  • Supported by:
    This work is supported by Ningxia Natural Science Foundation of China (No.2024AAC03755).

摘要:

为提高风电机组故障识别准确率,提出一种基于注意力机制(attention mechanism,AM)和残差胶囊网络(residual capsule network,RCN)与双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络融合的RCN-BiLSTM-Attention风电机组故障识别方法。首先,风电机组监控与数据采集(supervisory control and data acquisition,SCADA)系统中的异常值通过基于密度的有噪声空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法剔除;然后,通过RCN提取故障数据中的空间关系特征,采用BiLSTM网络动态捕获RCN所提取空间特征的层次时间依赖关系,得到多种故障时序信息,并融合AM对BiLSTM的输出赋予不同权重,以提高风电机组故障识别准确性;最后,通过多个风电机组SCADA数据进行验证,所提模型具有较高的识别准确率和泛化能力。

关键词: 风电机组, 故障识别, 双向长短期记忆网络

Abstract:

To improve the identification accuracy of wind turbine faults, an RCN-BiLSTM-Attention wind turbine fault identification method based on the attention mechanism (AM) and the fusion of residual capsule network (RCN) and bidirectional long short-term memory (BiLSTM) network is proposed. First, the abnormal values in the wind turbine supervisory control and data acquisition (SCADA) system are eliminated by the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Then, RCN is employed to extract spatial relational features from the fault data, the BiLSTM is performed to dynamically capture the hierarchical temporal dependencies of the spatial features extracted by RCN to obtain the temporal information of multiple faults, and fusion AM assigns different weights to the outputs of BiLSTM to enhance the accuracy of wind turbine fault identification. Finally, the SCADA data of several wind turbines are used to verify that the proposed model provides high identification accuracy and generalization ability compared with other models.

Key words: wind turbine, fault identification, bidirectional long short-term memory


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?