中国电力 ›› 2025, Vol. 58 ›› Issue (12): 178-189, 198.DOI: 10.11930/j.issn.1004-9649.202504033
• 新型电网 • 上一篇
陈景文1(
), 黄羽倩1(
), 刘耀先1(
), 陈宋宋2, 钱晓瑞3, 周颖2, 詹祥澎3
收稿日期:2025-04-12
修回日期:2025-12-08
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
CHEN Jingwen1(
), HUANG Yuqian1(
), LIU Yaoxian1(
), CHEN Songsong2, QIAN Xiaorui3, ZHOU Ying2, ZHAN Xiangpeng3
Received:2025-04-12
Revised:2025-12-08
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
针对未充分考虑气象因子交互作用、模型非线性表达能力存在局限性等问题,基于复合因子构造提出一种结合科尔莫戈洛夫-阿诺德网络(Kolmogorov- Arnold network,KAN)与双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的电力负荷预测方法。首先,通过高斯混合模型(Gaussian mixture model,GMM)将有相似特征的用电负荷曲线归类。其次,提出复合因子构造策略,通过皮尔逊相关性分析量化气象因子与负荷的线性关联度,筛选关键气象变量并构造交互项,充分挖掘气象因素间潜在交互作用,结合最大信息系数(maximal information coefficient,MIC)进一步提取非线性依赖特征。最后,针对传统BiLSTM模型全连接层对高维非线性特征学习能力受限的问题,引入KAN替代全连接层,利用其非线性映射能力,构建KAN-BiLSTM混合预测模型。基于某地区实际数据进行算例分析,实验结果表明,在春秋日、夏季常温日、夏季高温日、冬季日4类不同负荷模式下所提方法均具有较高的预测准确率和普适性,可为多气象耦合场景下的电力负荷精准预测提供一种可行的解决方案。
陈景文, 黄羽倩, 刘耀先, 陈宋宋, 钱晓瑞, 周颖, 詹祥澎. 基于复合因子构造的KAN-BiLSTM电力负荷预测方法[J]. 中国电力, 2025, 58(12): 178-189, 198.
CHEN Jingwen, HUANG Yuqian, LIU Yaoxian, CHEN Songsong, QIAN Xiaorui, ZHOU Ying, ZHAN Xiangpeng. A KAN-BiLSTM-based Power Load Forecasting Method Utilizing Composite Factor Construction[J]. Electric Power, 2025, 58(12): 178-189, 198.
| 负荷 模式 | 相关系数 | |||||||||||||
| 温度 | 相对 湿度 | 降雨量 | 风速 | 温度- 湿度 | 温度- 风速 | 湿度- 风速 | ||||||||
| 1 | 0.26 | –0.35 | 0.024 | 0.19 | –0.28 | 0.32 | –0.34 | |||||||
| 2 | 0.63 | 0.180 | 0.051 | 0.17 | 0.32 | 0.66 | 0.19 | |||||||
| 3 | –0.41 | –0.45 | 0.077 | 0.13 | –0.50 | –0.40 | –0.45 | |||||||
| 4 | 0.53 | –0.52 | –0.022 | 0.22 | –0.51 | 0.52 | –0.52 | |||||||
表 1 原始特征和复合因子相关系数
Table 1 Original feature and composite factor correlation coefficient
| 负荷 模式 | 相关系数 | |||||||||||||
| 温度 | 相对 湿度 | 降雨量 | 风速 | 温度- 湿度 | 温度- 风速 | 湿度- 风速 | ||||||||
| 1 | 0.26 | –0.35 | 0.024 | 0.19 | –0.28 | 0.32 | –0.34 | |||||||
| 2 | 0.63 | 0.180 | 0.051 | 0.17 | 0.32 | 0.66 | 0.19 | |||||||
| 3 | –0.41 | –0.45 | 0.077 | 0.13 | –0.50 | –0.40 | –0.45 | |||||||
| 4 | 0.53 | –0.52 | –0.022 | 0.22 | –0.51 | 0.52 | –0.52 | |||||||
| 模块 | 参数类型 | 范围 | 设定值 | |||
| BiLSTM | 隐藏层神经元/个 | [16,32,64,128] | 32 | |||
| 层数 | [1,2,3] | 2 | ||||
| KAN | 网格点数量 | [5,10,15,20] | 20 | |||
| KAN-layers | 2 | |||||
| Spline-order | [2,3,4] | 3 | ||||
| scale_spline | [0.5,1.0,1.5] | 1.0 | ||||
| base_activation | SiLU | |||||
| Scale-noise | 0.1 | |||||
| 其他 | 批大小 | [16,32,64,128] | 64 | |||
| 训练轮次 | 300 | |||||
| 学习率 | [ | 0.001 | ||||
| Dropout | [0.1,0.2,0.3,0.4,0.5] | 0.2 | ||||
| 窗口长度 | [24,48,96] | 24 | ||||
| 训练优化器 | Adam | |||||
| 损失函数 | 均方误差 |
表 2 模型参数范围及取值
Table 2 Model parameter range and values
| 模块 | 参数类型 | 范围 | 设定值 | |||
| BiLSTM | 隐藏层神经元/个 | [16,32,64,128] | 32 | |||
| 层数 | [1,2,3] | 2 | ||||
| KAN | 网格点数量 | [5,10,15,20] | 20 | |||
| KAN-layers | 2 | |||||
| Spline-order | [2,3,4] | 3 | ||||
| scale_spline | [0.5,1.0,1.5] | 1.0 | ||||
| base_activation | SiLU | |||||
| Scale-noise | 0.1 | |||||
| 其他 | 批大小 | [16,32,64,128] | 64 | |||
| 训练轮次 | 300 | |||||
| 学习率 | [ | 0.001 | ||||
| Dropout | [0.1,0.2,0.3,0.4,0.5] | 0.2 | ||||
| 窗口长度 | [24,48,96] | 24 | ||||
| 训练优化器 | Adam | |||||
| 损失函数 | 均方误差 |
| a)春秋日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 5.02 | 261.68 | 366.63 | 94.98 | ||||
| CF-LSTM | 5.53 | 290.22 | 402.85 | 94.47 | ||||
| CF-KAN-LSTM | 3.87 | 198.44 | 279.18 | 96.13 | ||||
| BiLSTM | 5.25 | 270.85 | 366.41 | 94.75 | ||||
| KAN-BiLSTM | 4.87 | 253.38 | 341.02 | 95.13 | ||||
| CF-BiLSTM | 3.37 | 183.55 | 257.23 | 96.63 | ||||
| CF-KAN-BiLSTM | 3.21 | 171.20 | 237.80 | 96.79 | ||||
| 文献[ | 3.65 | 192.55 | 271.19 | 96.35 | ||||
| b)夏季常温日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 6.38 | 494.45 | 641.57 | 93.62 | ||||
| CF-LSTM | 5.93 | 479.29 | 599.51 | 94.07 | ||||
| CF-KAN-LSTM | 5.52 | 438.78 | 572.38 | 94.48 | ||||
| BiLSTM | 5.83 | 452.10 | 574.67 | 94.17 | ||||
| KAN-BiLSTM | 5.53 | 443.52 | 573.29 | 94.47 | ||||
| CF-BiLSTM | 5.67 | 455.87 | 597.12 | 94.33 | ||||
| CF-KAN-BiLSTM | 4.62 | 365.68 | 469.58 | 95.38 | ||||
| 文献[ | 5.45 | 435.74 | 548.26 | 94.55 | ||||
| c)夏季高温日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 7.29 | 426.27 | 546.55 | 92.71 | ||||
| CF-LSTM | 6.97 | 412.92 | 532.50 | 93.03 | ||||
| CF-KAN-LSTM | 6.70 | 397.83 | 507.89 | 93.30 | ||||
| BiLSTM | 6.62 | 374.62 | 540.08 | 93.38 | ||||
| KAN-BiLSTM | 5.96 | 342.08 | 514.44 | 94.04 | ||||
| CF-BiLSTM | 6.02 | 343.21 | 500.46 | 93.98 | ||||
| CF-KAN-BiLSTM | 5.77 | 329.78 | 490.80 | 94.23 | ||||
| 文献[ | 6.10 | 345.80 | 533.41 | 93.90 | ||||
| d)冬季日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 7.13 | 748.46 | 963.27 | 92.87 | ||||
| CF-LSTM | 7.91 | 846.05 | 92.09 | |||||
| CF-KAN-LSTM | 6.93 | 730.34 | 927.14 | 93.07 | ||||
| BiLSTM | 6.42 | 686.20 | 830.40 | 93.58 | ||||
| KAN-BiLSTM | 5.86 | 624.47 | 751.50 | 94.14 | ||||
| CF-BiLSTM | 6.17 | 654.48 | 800.34 | 93.83 | ||||
| CF-KAN-BiLSTM | 5.77 | 618.99 | 733.86 | 94.23 | ||||
| 文献[ | 6.99 | 728.4 | 833.53 | 93.01 | ||||
表 3 不同负荷模式下各模型评价指标
Table 3 Evaluation indexes of each model under different load modes
| a)春秋日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 5.02 | 261.68 | 366.63 | 94.98 | ||||
| CF-LSTM | 5.53 | 290.22 | 402.85 | 94.47 | ||||
| CF-KAN-LSTM | 3.87 | 198.44 | 279.18 | 96.13 | ||||
| BiLSTM | 5.25 | 270.85 | 366.41 | 94.75 | ||||
| KAN-BiLSTM | 4.87 | 253.38 | 341.02 | 95.13 | ||||
| CF-BiLSTM | 3.37 | 183.55 | 257.23 | 96.63 | ||||
| CF-KAN-BiLSTM | 3.21 | 171.20 | 237.80 | 96.79 | ||||
| 文献[ | 3.65 | 192.55 | 271.19 | 96.35 | ||||
| b)夏季常温日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 6.38 | 494.45 | 641.57 | 93.62 | ||||
| CF-LSTM | 5.93 | 479.29 | 599.51 | 94.07 | ||||
| CF-KAN-LSTM | 5.52 | 438.78 | 572.38 | 94.48 | ||||
| BiLSTM | 5.83 | 452.10 | 574.67 | 94.17 | ||||
| KAN-BiLSTM | 5.53 | 443.52 | 573.29 | 94.47 | ||||
| CF-BiLSTM | 5.67 | 455.87 | 597.12 | 94.33 | ||||
| CF-KAN-BiLSTM | 4.62 | 365.68 | 469.58 | 95.38 | ||||
| 文献[ | 5.45 | 435.74 | 548.26 | 94.55 | ||||
| c)夏季高温日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 7.29 | 426.27 | 546.55 | 92.71 | ||||
| CF-LSTM | 6.97 | 412.92 | 532.50 | 93.03 | ||||
| CF-KAN-LSTM | 6.70 | 397.83 | 507.89 | 93.30 | ||||
| BiLSTM | 6.62 | 374.62 | 540.08 | 93.38 | ||||
| KAN-BiLSTM | 5.96 | 342.08 | 514.44 | 94.04 | ||||
| CF-BiLSTM | 6.02 | 343.21 | 500.46 | 93.98 | ||||
| CF-KAN-BiLSTM | 5.77 | 329.78 | 490.80 | 94.23 | ||||
| 文献[ | 6.10 | 345.80 | 533.41 | 93.90 | ||||
| d)冬季日 | ||||||||
| 模型 | eMAPE/% | eMAE/kW | eRMSE/kW | Pprecision/% | ||||
| CF-TCN | 7.13 | 748.46 | 963.27 | 92.87 | ||||
| CF-LSTM | 7.91 | 846.05 | 92.09 | |||||
| CF-KAN-LSTM | 6.93 | 730.34 | 927.14 | 93.07 | ||||
| BiLSTM | 6.42 | 686.20 | 830.40 | 93.58 | ||||
| KAN-BiLSTM | 5.86 | 624.47 | 751.50 | 94.14 | ||||
| CF-BiLSTM | 6.17 | 654.48 | 800.34 | 93.83 | ||||
| CF-KAN-BiLSTM | 5.77 | 618.99 | 733.86 | 94.23 | ||||
| 文献[ | 6.99 | 728.4 | 833.53 | 93.01 | ||||
| 分类 | 训练时间/s | |||
| CF-BiLSTM | CF-KAN-BiLSTM | |||
| 春秋日 | 246 | 224 | ||
| 夏季常温日 | 76 | 67 | ||
| 夏季高温日 | 107 | 73 | ||
| 冬季日 | 30 | 27 | ||
表 4 训练时间对比
Table 4 Training time comparison
| 分类 | 训练时间/s | |||
| CF-BiLSTM | CF-KAN-BiLSTM | |||
| 春秋日 | 246 | 224 | ||
| 夏季常温日 | 76 | 67 | ||
| 夏季高温日 | 107 | 73 | ||
| 冬季日 | 30 | 27 | ||
| 1 | 舒印彪, 张正陵, 汤涌, 等. 新型电力系统构建的若干基本问题[J]. 中国电机工程学报, 2024, 44 (21): 8327- 8341. |
| SHU Yinbiao, ZHANG Zhengling, TANG Yong, et al. Fundamental issues of new-type power system construction[J]. Proceedings of the CSEE, 2024, 44 (21): 8327- 8341. | |
| 2 | 李科, 潘庭龙, 许德智. 基于MSCNN-BiGRU-Attention的短期电力负荷预测[J]. 中国电力, 2025, 58 (6): 10- 18. |
| LI Ke, PAN Tinglong, XU Dezhi. Short-term power load forecasting based on MSCNN-BiGRU-attention[J]. Electric Power, 2025, 58 (6): 10- 18. | |
| 3 | 罗凯鸿, 徐茹枝, 夏迪娅, 等. 基于匿名性差分隐私联邦学习的负荷预测模型训练方法[J]. 电力信息与通信技术, 2024, 22 (11): 25- 33. |
| LUO Kaihong, XU Ruzhi, XIA Diya, et al. A training method for load forecasting models based on anonymity differential privacy federated learning[J]. Electric Power Information and Communication Technology, 2024, 22 (11): 25- 33. | |
| 4 | 李磊, 林珊, 贾颉辉. 基于TCN-Attention神经网络的短期负荷预测[J]. 电力信息与通信技术, 2023, 21 (3): 10- 16. |
| LI Lei, LIN Shan, JIA Jiehui. Short-term load forecasting based on TCN-attention neural network[J]. Electric Power Information and Communication Technology, 2023, 21 (3): 10- 16. | |
| 5 | 徐玉婷, 田世明, 陈宋宋, 等. 基于LSTM的居民负荷预测及其可调节潜力分析[J]. 电力信息与通信技术, 2023, 21 (5): 1- 8. |
| XU Yuting, TIAN Shiming, CHEN Songsong, et al. Resident load forecasting based on LSTM and its adjustable potential analysis[J]. Electric Power Information and Communication Technology, 2023, 21 (5): 1- 8. | |
| 6 |
YAZICI I, BEYCA O F, DELEN D. Deep-learning-based short-term electricity load forecasting: a real case application[J]. Engineering Applications of Artificial Intelligence, 2022, 109, 104645.
DOI |
| 7 | 张淑清, 李君, 姜安琦, 等. 基于FPA-VMD和BiLSTM神经网络的新型两阶段短期电力负荷预测[J]. 电网技术, 2022, 46 (8): 3269- 3279. |
| ZHANG Shuqing, LI Jun, JIANG Anqi, et al. A novel two-stage model based on FPA-VMD and BiLSTM neural network for short-term power load forecasting[J]. Power System Technology, 2022, 46 (8): 3269- 3279. | |
| 8 | 胡威, 张新燕, 李振恩, 等. 基于优化的VMD-mRMR-LSTM模型的短期负荷预测[J]. 电力系统保护与控制, 2022, 50 (1): 88- 97. |
| HU Wei, ZHANG Xinyan, LI Zhenen, et al. Short-term load forecasting based on an optimized VMD-m RMR-LSTM model[J]. Power System Protection and Control, 2022, 50 (1): 88- 97. | |
| 9 |
JAHANGIR H, TAYARANI H, GOUGHERI S S, et al. Deep learning-based forecasting approach in smart grids with microclustering and bidirectional LSTM network[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (9): 8298- 8309.
DOI |
| 10 |
陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45 (13): 85- 94.
DOI |
|
CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al. Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of Electric Power Systems, 2021, 45 (13): 85- 94.
DOI |
|
| 11 | 杨龙, 吴红斌, 丁明, 等. 新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J]. 电力系统自动化, 2021, 45 (3): 166- 173. |
| YANG Long, WU Hongbin, DING Ming, et al. Short-term load forecasting in renewable energy grid based on bi-directional long short-term memory network considering feature selection[J]. Automation of Electric Power Systems, 2021, 45 (3): 166- 173. | |
| 12 | 邓皓云, 陈卓. 基于EEMD-IWOA-TCN的电网短期负荷预测[J]. 电力信息与通信技术, 2024, 22 (1): 70- 76. |
| DENG Haoyun, CHEN Zhuo. Short-term load forecasting of power gird based on EEMD-IWOA-TCN[J]. Electric Power Information and Communication Technology, 2024, 22 (1): 70- 76. | |
| 13 | 王继东, 于俊源, 孔祥玉. 基于双重分解和双向长短时记忆网络的中长期负荷预测模型[J]. 电网技术, 2024, 48 (8): 3418- 3426. |
| WANG Jidong, YU Junyuan, KONG Xiangyu. Medium-and long-term load forecasting model based on double decomposition and BiLSTM[J]. Power System Technology, 2024, 48 (8): 3418- 3426. | |
| 14 |
SHARMA A, JAIN S K. A novel two-stage framework for mid-term electric load forecasting[J]. IEEE Transactions on Industrial Informatics, 2024, 20 (1): 247- 255.
DOI |
| 15 |
WAN A P, CHANG Q, AL-BUKHAITI K, et al. Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism[J]. Energy, 2023, 282, 128274.
DOI |
| 16 | 钟燕, 王军, 宋戈, 等. 基于二次重构分解去噪及双向长短时记忆网络的极端天气下超短期电力负荷预测[J]. 电网技术, 2025, 49 (11): 4791- 4800. |
| ZHONG Yan, WANG Jun, SONG Ge, et al. Ultra-short-term power load prediction under extreme weather based on secondary reconstruction denoising and BiLSTM[J]. Power System Technology, 2025, 49 (11): 4791- 4800. | |
| 17 |
盛雷, 李丽娟, 付西红, 等. 基于KAN-Transformer的离轴三反装调仿真技术[J]. 光学学报, 2025, 45 (5): 0522002.
DOI |
|
SHENG Lei, LI Lijuan, FU Xihong, et al. Simulation technology for assembly of off-axis three-mirror optical systems based on KAN-transformer[J]. Acta Optica Sinica, 2025, 45 (5): 0522002.
DOI |
|
| 18 | LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks [EB/OL]. (2525-02-09) [2025-08-22]. https://arxiv.org/abs/2404.19756. |
| 19 | 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术, 2021, 45 (11): 4532- 4539. |
| ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45 (11): 4532- 4539. | |
| 20 | 姚芳, 汤俊豪, 陈盛华, 等. 基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J]. 电力系统保护与控制, 2023, 51 (16): 158- 167. |
| YAO Fang, TANG Junhao, CHEN Shenghua, et al. Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J]. Power System Protection and Control, 2023, 51 (16): 158- 167. | |
| 21 | 郑豪丰, 杨国华, 康文军, 等. 基于多负荷特征和TCN-GRU神经网络的负荷预测[J]. 中国电力, 2022, 55 (11): 142- 148. |
| ZHENG Haofeng, YANG Guohua, KANG Wenjun, et al. Load forecasting based on multiple load features and TCN-GRU neural network[J]. Electric Power, 2022, 55 (11): 142- 148. | |
| 22 | 韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J]. 中国电机工程学报, 2023, 43 (22): 8569- 8592. |
| HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J]. Proceedings of the CSEE, 2023, 43 (22): 8569- 8592. | |
| 23 | 邓明亮, 张钊, 周红艳, 等. 基于PCA-PSO_KFCM聚类和BiLSTM-Attention的短期电力负荷预测[J]. 计算机工程与科学, 2025, 47 (11): 2067- 2081. |
| DENG Mingliang, ZHANG Zhao, ZHOU Hongyan, et al. Short-term power load forecasting based on PCA-PSO_KFCM clustering and BiLSTM-Attention[J]. Computer Engineering & Science, 2025, 47 (11): 2067- 2081. | |
| 24 |
TAN M, LIAO C C, CHEN J, et al. A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor[J]. Applied Energy, 2023, 343, 121177.
DOI |
| 25 | 黄南天, 孙赫宏, 王圣元, 等. 计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测[J]. 中国电机工程学报, 2025, 45 (4): 1424- 1436. |
| HUANG Nantian, SUN Hehong, WANG Shengyuan, et al. Short-term spatial-temporal forecasting of electric vehicle charging load with differentiated spatial-temporal coupling correlation of multiple public charging stations[J]. Proceedings of the CSEE, 2025, 45 (4): 1424- 1436. | |
| 26 | 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43 (8): 75- 81. |
| TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined XGBOOST-LSTM model[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 75- 81. | |
| 27 | 陈仕启, 吴燕, 杨德昌, 等. 基于负荷二次分解与特征处理的电力系统短期负荷预测[J]. 高电压技术, 2025, 51 (5): 2571- 2581. |
| CHEN Shiqi, WU Yan, YANG Dechang, et al. Short-term load forecasting of power system based on secondary load decomposition and feature processing[J]. High Voltage Engineering, 2025, 51 (5): 2571- 2581. | |
| 28 |
NOWAKOWSKA E, KORONACKI J, LIPOVETSKY S. Clusterability assessment for Gaussian mixture models[J]. Applied Mathematics and Computation, 2015, 256, 591- 601.
DOI |
| 29 |
YANG M S, LAI C Y, LIN C Y. A robust EM clustering algorithm for Gaussian mixture models[J]. Pattern Recognition, 2012, 45 (11): 3950- 3961.
DOI |
| 30 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524.
DOI |
| 31 |
MASSAOUDI M, CHIHI I, SIDHOM L, et al. An effective hybrid NARX-LSTM model for point and interval PV power forecasting[J]. IEEE Access, 2021, 9, 36571- 36588.
DOI |
| 32 | 刘灿锋, 孙浩, 东辉. 结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究[J]. 图学学报, 2024, 45 (6): 1256- 1265. |
| LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network[J]. Journal of Graphics, 2024, 45 (6): 1256- 1265. | |
| 33 | 郭朝泽. 基于组合模型的短期电力负荷预测研究[D]. 呼和浩特: 内蒙古工业大学, 2022. |
| GUO ZhaoZe. Research on short-term power load forecasting based on combined model[D]. Hohhot: Inner Mongolia University of Tehchnology, 2022. | |
| 34 | 王凌云, 周翔, 田恬, 等. 基于多维气象信息时空融合和MPA-VMD的短期电力负荷组合预测模型[J]. 电力自动化设备, 2024, 44 (2): 190- 197. |
| WANG Lingyun, ZHOU Xiang, TIAN Tian, et al. Combination forecasting model of short-term power load based on multi-dimensional meteorological information spatio-temporal fusion and MPA-VMD[J]. Electric Power Automation Equipment, 2024, 44 (2): 190- 197. | |
| 35 | 刘蓉晖, 石炬烽, 孙改平, 等. 基于MV-WC和门控循环单元的短期净负荷概率预测[J]. 南方电网技术, 2025, 19 (6): 152- 161. |
| LIU Ronghui, SHI Jufeng, SUN Gaiping, et al. Short-term net load probability forecasting based on MV-WC and gated recurrent unit[J]. Southern Power System Technology, 2025, 19 (6): 152- 161. | |
| 36 | 周泽楷, 侯宏娟, 孙莉, 等. 基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究[J]. 太阳能学报, 2024, 45 (10): 415- 422. |
| ZHOU Zekai, HOU Hongjuan, SUN Li, et al. Research on solar heating load forecasting based on cnn and bilstm neural network model[J]. Acta Energiae Solaris Sinica, 2024, 45 (10): 415- 422. |
| [1] | 罗超, 倪恬, 陈凌云, 康义, 侯慧, 吴细秀. 高斯分布引导下负荷8760曲线全景最优化预测[J]. 中国电力, 2025, 58(8): 31-40. |
| [2] | 陈小乾, 尹亮, 展宗辉, 王放, 李旭涛. 基于注意力机制和RCN-BiLSTM融合的风电机组故障识别[J]. 中国电力, 2025, 58(8): 94-102. |
| [3] | 李科, 潘庭龙, 许德智. 基于MSCNN-BiGRU-Attention的短期电力负荷预测[J]. 中国电力, 2025, 58(6): 10-18. |
| [4] | 于多, 曹燚, 王海荣, 赵翱东, 曹倩. 基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测[J]. 中国电力, 2025, 58(6): 19-32. |
| [5] | 孙庆超, 李嘉靓, 江万里, 王若愚, 李植鹏, 胡亚荣, 朱健斌. 基于数据驱动时空网络的城市中长期电力负荷预测[J]. 中国电力, 2025, 58(3): 168-174. |
| [6] | 孟浩, 徐飞, 符帅, 孙鹏, 郝玲, 刘博宇, 刘芷维. 考虑温控型负荷特性影响的集群用户超短期负荷预测方法[J]. 中国电力, 2025, 58(12): 63-72, 85. |
| [7] | 俞胜, 孙可, 蔡华, 刘剑, 顾益磊, 姜昀芃. 结合极端梯度提升决策树与改进Informer的短期电力负荷预测方法[J]. 中国电力, 2025, 58(10): 195-205. |
| [8] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
| [9] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
| [10] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
| [11] | 刘航, 申皓, 杨勇, 纪陵, 余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测[J]. 中国电力, 2024, 57(5): 61-69. |
| [12] | 李丹, 贺帅, 颜伟, 胡越, 方泽仁, 梁云嫣. 考虑动态时间锚点和典型特征约束的年日均负荷曲线预测[J]. 中国电力, 2024, 57(11): 36-47. |
| [13] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
| [14] | 唐旭辰, 潮铸, 段秦尉, 苏炳洪, 陈卉灿. 基于分层测量数据的高压变电站概率负荷预测方法[J]. 中国电力, 2023, 56(8): 143-150. |
| [15] | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56(8): 151-156,165. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编