中国电力 ›› 2025, Vol. 58 ›› Issue (6): 10-18.DOI: 10.11930/j.issn.1004-9649.202406098

• 基于人工智能驱动的低碳高品质新型配电系统 • 上一篇    下一篇

基于MSCNN-BiGRU-Attention的短期电力负荷预测

李科1(), 潘庭龙1(), 许德智2()   

  1. 1. 江南大学 物联网工程学院,江苏 无锡 214122
    2. 东南大学 电气工程学院,江苏 南京 210096
  • 收稿日期:2024-06-26 发布日期:2025-06-30 出版日期:2025-06-28
  • 作者简介:
    李科(1998),男,硕士研究生,从事微电网技术研究,E-mail:2287224190@qq.com
    潘庭龙(1976),男,通信作者,博士,教授,从事微电网控制技术、功率变换技术及应用、电气传动系统及其先进控制技术研究,E-mail:tlpan@jiangnan.edu.cn
    许德智(1985),男,博士,教授,从事故障诊断和容错控制、电机控制、智能电网等研究,E-mail: lutxdz@126.com(第二十七届中国科协年会学术论文“配微储协同的低碳高品质新型配电系统”专题)
  • 基金资助:
    国家自然科学基金优秀青年基金资助项目(62222307);江苏省基础研究计划(自然科学基金)面上项目(BK20211235)。

Short-Term Power Load Forecasting Based on MSCNN-BiGRU-Attention

LI Ke1(), PAN Tinglong1(), XU Dezhi2()   

  1. 1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
    2. School of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2024-06-26 Online:2025-06-30 Published:2025-06-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China Outstanding Youth Fund Project (No.62222307), Jiangsu Provincial Natural Science Foundation (No.BK20211235).

摘要:

为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型进行短期电力负荷预测。首先,通过Spearman相关系数分析电力负荷数据集的相关性,筛选出相关性较高的特征,构建电力负荷数据集;其次,将数据输入到多尺度卷积神经网络(multi-scale convolutional neural network,MSCNN),对电力负荷数据进行多尺度的时序提取;然后,将提取后的时序特征输入到双向门控循环单元(bi-directional gated recurrent unit,BiGRU)神经网络进行时序预测,并通过注意力(Attention)机制对时序特征进行过滤和筛选;最后,通过全连接层整合输出预测值。以澳大利亚某地区3年的多维电力负荷数据作为数据集,并设置5种对照组模型。同时选用国内南方某地区2年的多维电力负荷数据作为模型验证数据集。结果表明,相较其他模型,MSCNN-BiGRU-Attention组合模型能够取得更好的预测效果,有效解决区域级电力负荷关键特征难以提取的问题。

关键词: 电力负荷预测, 多尺度卷积神经网络, 双向门控循环单元, 注意力机制, 深度学习, Spearman相关系数

Abstract:

To address the problem of difficult extraction of key features in power load, a multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention (MSCNN-BiGRU-Attention) hybrid model is proposed for short-term power load forecasting. Firstly, the Spearman correlation coefficient was used to analyze the correlation of power load data set, and the features with high correlation were screened out to build the power load data set. Secondly, the data was input into the multi-scale convolutional neural network (MSCNN) to extract the multi-scale time sequence of power load data. Then, the extracted temporal features were input into the bidirectional gated recurrent unit (BiGRU) neural network for temporal prediction, and the temporal features were filtered and screened by attention mechanism. Finally, the outputs are integrated through a fully connected layer to generate the predicted values. With the 3 years of multidimensional power load data from a region in Australia as a data set, five control models were established. Meanwhile, we selected two years of multidimensional power load data from a region in southern China as the validation dataset for the models. The results show that MSCNN-BiGRU-Attention hybrid model can achieve better prediction effects than other models, thus effectively solving the problem of difficult extraction of the key features of regional power load.

Key words: power load forecasting, multi-scale convolutional neural network, bi-directional gated recurrent unit, Attention mechanism, deep learning, Spearman correlation coefficient


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?