[1] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841–851. [2] JIAO R H, ZHANG T M, JIANG Y Z, et al. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network[J]. IEEE Access, 2018, 6: 59438–59448. [3] NIU D X, YU M, SUN L J, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy, 2022, 313: 118801. [4] 张诤杰. 基于门循环单元神经网络的微电网日前电力负荷预测[D]. 徐州: 中国矿业大学, 2020. ZHANG Zhengjie. Day-ahead load forecasting of microgrid based on GRU network[D]. Xuzhou: China University of Mining and Technology, 2020. [5] 孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5): 133–139 KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5): 133–139 [6] 沈兆轩, 袁三男. 利用卷积神经网络支持向量回归机的地区负荷聚类集成预测[J]. 电网技术, 2020, 44(6): 2237–2244 SHEN Zhaoxuan, YUAN Sannan. Regional load clustering integration forecasting based on convolutional neural network support vector regression machine[J]. Power System Technology, 2020, 44(6): 2237–2244 [7] 陈剑强, 杨俊杰, 楼志斌. 基于XGBoost算法的新型短期负荷预测模型研究[J]. 电测与仪表, 2019, 56(21): 23–29 CHEN Jianqiang, YANG Junjie, LOU Zhibin. A new short-term load forecasting model based on XGBoost algorithm[J]. Electrical Measurement & Instrumentation, 2019, 56(21): 23–29 [8] 席雅雯, 吴俊勇, 石琛, 等. 融合历史数据和实时影响因素的精细化负荷预测[J]. 电力系统保护与控制, 2019, 47(1): 80–87 XI Yawen, WU Junyong, SHI Chen, et al. A refined load forecasting based on historical data and real-time influencing factors[J]. Power System Protection and Control, 2019, 47(1): 80–87 [9] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131–137 LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131–137 [10] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745–1751 PENG Wen, WANG Jinrui, YIN Shanqing. Short-term load forecasting model based on attention-LSTM in electricity market[J]. Power System Technology, 2019, 43(5): 1745–1751 [11] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53–62 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53–62 [12] YANG D C, GUO J, SUN S L, et al. An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting[J]. Applied Energy, 2022, 306: 117992. [13] SUN W, LI Z Q. Hourly PM2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China[J]. Journal of Cleaner Production, 2020, 263: 121442. [14] 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术., 2020, 44(2): 593–602 DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44(2): 593–602 [15] 吴峰, 王飞, 顾康慧, 等. 基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J]. 电力系统自动化, 2021, 45(1): 65–70 WU Feng, WANG Fei, GU Kanghui, et al. Output power prediction of wave energy generation system based on modified ensemble empirical mode decomposition-autoregressive integrated moving average model[J]. Automation of Electric Power Systems, 2021, 45(1): 65–70 [16] 刘辉, 凌宁青, 罗志强, 等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力, 2022, 50(8): 30–37 LIU Hui, LING Ningqing, LUO Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50(8): 30–37 [17] 杨国华, 郑豪丰, 张鸿皓, 等. 基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测[J]. 电力系统自动化, 2022, 46(6): 73–82 YANG Guohua, ZHENG Haofeng, ZHANG Honghao, et al. Short-term load forecasting based on holt-winters exponential smoothing and temporal convolutional network[J]. Automation of Electric Power Systems, 2022, 46(6): 73–82 [18] 冯裕祺, 李辉, 李利娟, 等. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55(7): 163–171 FENG Yuqi, LI Hui, LI Lijuan, et al. Voltage trajectory prediction of photovoltaic power station based on CNN-GRU[J]. Electric Power, 2022, 55(7): 163–171 [19] 庄家懿, 杨国华, 郑豪丰, 等. 并行多模型融合的混合神经网络超短期负荷预测[J]. 电力建设, 2020, 41(10): 1–8 ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Ultra-short-term load forecasting using hybrid neural network based on parallel multi-model combination[J]. Electric Power Construction, 2020, 41(10): 1–8 [20] ENTSO-E Transparency Platform[EB/OL]. (2020-01-06) [2020-12-15].https://transparency.entsoe.eu. [21] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[EB/OL]. (2012-01-02) [2020-10-09].https://arxiv.org/abs/1201.0490. [22] KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31 st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 3149–3157. [23] CHOLLET F. Deep learning with python[M]. Manning Publications, 2017. [24] YIN L F, XIE J X. Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems[J]. Applied Energy, 2021, 283: 116328. [25] ORESHKIN B N, DUDEK G, PEŁKA P, et al. N-BEATS neural network for mid-term electricity load forecasting[J]. Applied Energy, 2021, 293(1): 116918.
|