中国电力 ›› 2024, Vol. 57 ›› Issue (7): 227-237.DOI: 10.11930/j.issn.1004-9649.202404039
刘含笑1,2,3(), 单思珂1,2(
), 魏书洲3,4, 于立元1, 王帅1, 刘美玲1, 崔盈1
收稿日期:
2024-04-08
出版日期:
2024-07-28
发布日期:
2024-07-23
作者简介:
刘含笑(1987—),男,通信作者,硕士,高级工程师,从事大气污染治理及双碳技术研究,E-mail:gutounan@163.com基金资助:
Hanxiao LIU1,2,3(), Sike SHAN1,2(
), Shuzhou WEI3,4, Liyuan YU1, Shuai WANG1, Meiling LIU1, Ying CUI1
Received:
2024-04-08
Online:
2024-07-28
Published:
2024-07-23
Supported by:
摘要:
碳足迹是量化碳排放的重要工具,能够为燃煤发电碳减排提供数据支撑。为研究燃煤机组的电力碳足迹及影响因素,基于生命周期法进行了实际案例计算及敏感性分析。碳足迹计算结果显示,300 MW燃煤发电机组的单位上网电量碳足迹为0.932 kgCO2e/(kW·h),主要排放源为煤炭燃烧,占比约为79%,其次是煤炭的上游生产和加工,占比约为20%。碳足迹和碳核查的对比分析结论表明,减碳不仅应从燃煤电厂的常规减碳方式入手,降低上游的煤炭供给阶段排放仍是一种有效方案。
刘含笑, 单思珂, 魏书洲, 于立元, 王帅, 刘美玲, 崔盈. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57(7): 227-237.
Hanxiao LIU, Sike SHAN, Shuzhou WEI, Liyuan YU, Shuai WANG, Meiling LIU, Ying CUI. Life-Cycle Carbon Footprint Assessment of Coal-fired Power Generation[J]. Electric Power, 2024, 57(7): 227-237.
数据种类 | 数值 | |||
煤炭(烟煤) | 用量/t | 3.09×106 | ||
元素碳含量/(tC·t–1) | 0.54 | |||
铁路运输里程/km | 868.00 | |||
助燃剂(柴油) | 用量/t | 94.00 | ||
元素碳含量/(tC·t–1) | 0.86 | |||
辅料 | 工艺水/t | 1.69×107 | ||
尿素/t | 941.00 | |||
液氨/t | 1.15×103 | |||
石灰石/t | 4.80×103 | |||
各类用油/t | 73.00 | |||
外购电 | 外购电/(MW·h) | 0 | ||
产品 | 上网电量/(MW·h) | 5.95×106 | ||
供热量/GJ | 1.29×1010 | |||
副产品/废物 | 煤渣/t | 7.30×104 | ||
除尘灰/t | 4.62×105 | |||
石膏/t | 8.40×104 |
表 1 燃煤发电的现场数据
Table 1 Field data for the coal-fired power generation
数据种类 | 数值 | |||
煤炭(烟煤) | 用量/t | 3.09×106 | ||
元素碳含量/(tC·t–1) | 0.54 | |||
铁路运输里程/km | 868.00 | |||
助燃剂(柴油) | 用量/t | 94.00 | ||
元素碳含量/(tC·t–1) | 0.86 | |||
辅料 | 工艺水/t | 1.69×107 | ||
尿素/t | 941.00 | |||
液氨/t | 1.15×103 | |||
石灰石/t | 4.80×103 | |||
各类用油/t | 73.00 | |||
外购电 | 外购电/(MW·h) | 0 | ||
产品 | 上网电量/(MW·h) | 5.95×106 | ||
供热量/GJ | 1.29×1010 | |||
副产品/废物 | 煤渣/t | 7.30×104 | ||
除尘灰/t | 4.62×105 | |||
石膏/t | 8.40×104 |
单元过程 | 排放因子 | 来源 | ||
煤炭开采/(kgCO2e·kg)–1 | 0.499 | 文献[ | ||
铁路运输/tCO2e·(t·km)–1 | 10.000 | 文献[ | ||
货运/tCO2e·(t·km)–1 | 0.052 | 文献[ | ||
外购电/tCO2e·(MW·h)–1 | 0.570 | 文献[ | ||
工艺水/(kgCO2e·kg)–1 | 1.905×10–3 | Ecoinvent3.8 | ||
尿素/(kgCO2e·kg)–1 | 2.898 | Ecoinvent3.8 | ||
液氨/(kgCO2e·kg)–1 | 5.316 | Ecoinvent3.8 | ||
脱硫石灰石生产/(kgCO2e·kg)–1 | 2.816×10–3 | Ecoinvent3.8 | ||
特种润滑油/(kgCO2e·kg)–1 | 1.457 | Ecoinvent3.8 | ||
绝缘油/(kgCO2e·kg)–1 | 1.457 | Ecoinvent3.8 | ||
柴油生产/(kgCO2e·kg)–1 | 0.853 | 文献[ | ||
除尘灰/(kgCO2e·kg)–1 | –0.216 | 文献[ | ||
石膏/(kgCO2e·kg)–1 | –0.099 | 文献[ | ||
粉煤灰/(kgCO2e·kg)–1 | –0.253 | 文献[ |
表 2 碳排放因子
Table 2 Carbon emission factors
单元过程 | 排放因子 | 来源 | ||
煤炭开采/(kgCO2e·kg)–1 | 0.499 | 文献[ | ||
铁路运输/tCO2e·(t·km)–1 | 10.000 | 文献[ | ||
货运/tCO2e·(t·km)–1 | 0.052 | 文献[ | ||
外购电/tCO2e·(MW·h)–1 | 0.570 | 文献[ | ||
工艺水/(kgCO2e·kg)–1 | 1.905×10–3 | Ecoinvent3.8 | ||
尿素/(kgCO2e·kg)–1 | 2.898 | Ecoinvent3.8 | ||
液氨/(kgCO2e·kg)–1 | 5.316 | Ecoinvent3.8 | ||
脱硫石灰石生产/(kgCO2e·kg)–1 | 2.816×10–3 | Ecoinvent3.8 | ||
特种润滑油/(kgCO2e·kg)–1 | 1.457 | Ecoinvent3.8 | ||
绝缘油/(kgCO2e·kg)–1 | 1.457 | Ecoinvent3.8 | ||
柴油生产/(kgCO2e·kg)–1 | 0.853 | 文献[ | ||
除尘灰/(kgCO2e·kg)–1 | –0.216 | 文献[ | ||
石膏/(kgCO2e·kg)–1 | –0.099 | 文献[ | ||
粉煤灰/(kgCO2e·kg)–1 | –0.253 | 文献[ |
1 |
HORTON D E, JOHNSON N C, SINGH D, et al. Contribution of changes in atmospheric circulation patterns to extreme temperature trends[J]. Nature, 2015, 522, 465- 469.
DOI |
2 | 胡道成, 王睿, 赵瑞, 等. 二氧化碳捕集技术及适用场景分析[J]. 发电技术, 2023, 44 (4): 502- 513. |
HU Daocheng, WANG Rui, ZHAO Rui, et al. Research on carbon dioxide capture technology and suitable scenarios[J]. Power Generation Technology, 2023, 44 (4): 502- 513. | |
3 | Energy Institute. Statistical review of world energy 2023[EB/OL]. (2023-06-01) [2024-04-30]. https://kpmg.com/cn/zh/home/campaigns/2023/10/statistical-review-of-world-energy-2023.html. |
4 |
燕志鹏, 于泽民, 顾新莲. 我国碳排放价格与煤炭期货价格的传导机制研究[J]. 经济问题, 2022, (6): 67- 74.
DOI |
YAN Zhipeng, YU Zemin, GU Xinlian. Research on conduction mechanism between carbon price and coal future price in China[J]. On Economic Problems, 2022, (6): 67- 74.
DOI |
|
5 | 王一蓉, 陈浩林, 林立身, 等. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57 (5): 79- 87. |
WANG Yirong, CHEN Haolin, LIN Lishen, et al. National carbon price prediction considering carbon emissions from the power industry[J]. Electric Power, 2024, 57 (5): 79- 87. | |
6 | IEA. Electricity 2024[EB/OL]. (2024-01-04) [2024-04-30]. https://www.iea.org/reports/electricity-2024. |
7 | 王月明, 姚明宇, 张一帆, 等. 煤电的低碳化发展路径研究[J]. 热力发电, 2022, 51 (1): 11- 20. |
WANG Yueming, YAO Mingyu, ZHANG Yifan, et al. Study on low-carbon development path of coal-fired power generation[J]. Thermal Power Generation, 2022, 51 (1): 11- 20. | |
8 | 汤芳, 代红才, 张宁, 等. 能耗双控向碳排放双控转变影响分析及推进路径设计[J]. 中国电力, 2023, 56 (12): 255- 261. |
TANG Fang, DAI Hongcai, ZHANG Ning, et al. Effect analysis and promotion path design for transformation from energy consumption "dual control" to carbon "dual control"[J]. Electric Power, 2023, 56 (12): 255- 261. | |
9 | METZ B, KUIJPERS L, SOLOMON S, et al. IPCC/TEAP special report on safe guarding the ozone layer and the global climate system: issues related to hydro fluorocarbons and perfluoro carbons[M]. Cambridge: Published for the Intergovernmental Panel on Climate Change [M] Cambridge University Press, 2005. |
10 |
王斯一, 张彩虹, 米锋. 资源价值流视角下发电企业碳足迹与经济成本评价: 燃煤发电与生物质发电比较研究[J]. 工业技术经济, 2018, 37 (12): 78- 85.
DOI |
WANG Siyi, ZHANG Caihong, MI Feng. Evaluation of carbon footprint and economic cost from the perspective of resource value flow of power generation enterprises[J]. Journal of Industrial Technological Economics, 2018, 37 (12): 78- 85.
DOI |
|
11 | 贾亚雷, 王继选, 韩中合, 等. 基于LCA的风力发电、光伏发电及燃煤发电的环境负荷分析[J]. 动力工程学报, 2016, 36 (12): 1000- 1009. |
JIA Yalei, WANG Jixuan, HAN Zhonghe, et al. Analysis on environmental load of wind, PV and coal-fired power generation based on life cycle assessment[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (12): 1000- 1009. | |
12 | 宋国辉, 唐璐, 姜武, 等. 2×200MW级某天然气热电联产项目的生命周期环境影响评价[J]. 中国电力, 2014, 47 (12): 149- 155. |
SONG Guohui, TANG Lu, JIANG Wu, et al. Life-cycle environmental impact assessment of a typical 2 × 200 MW natural gas combined cycle-combined heat and power plant[J]. Electric Power, 2014, 47 (12): 149- 155. | |
13 |
刘顺妮, 林宗寿, 张小伟. 硅酸盐水泥的生命周期评价方法初探[J]. 中国环境科学, 1998, 18 (4): 328- 332.
DOI |
LIU Shunni, LIN Zongshou, ZHANG Xiaowei. Studies on the life circle assessment of Portland cement[J]. China Environmental Science, 1998, 18 (4): 328- 332.
DOI |
|
14 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境管理生命周期评价 原则与框架: GB/T 24040—2008[S]. 北京: 中国标准出版社, 2008. |
15 |
TONG R P, WANG Y R, ZHAO X, et al. Modeling health impacts of air pollutant emissions from the coal-fired power industry based on LCA and oriented by WTP: a case study[J]. Environmental Science and Pollution Research International, 2022, 29 (23): 34486- 34499.
DOI |
16 |
MODAHL I S, ASKHAM C, LYNG K A, et al. Weighting of environmental trade-offs in CCS—an LCA case study of electricity from a fossil gas power plant with post-combustion CO2 capture, transport and storage[J]. The International Journal of Life Cycle Assessment, 2012, 17 (7): 932- 943.
DOI |
17 | SCHMIDT M, NILL M, SCHOLZ J. Determining the scope 3 emissions of companies[J]. Chemical Engineering & Technology, 2022, 45 (7): 1218- 1230. |
18 | 张振芳. 露天煤矿碳排放量核算及碳减排途径研究[D]. 徐州: 中国矿业大学, 2013. |
ZHANG Zhenfang. Study on carbon emissions accounting and carbon emission reduction approach of surface coal mine[D]. Xuzhou: China University of Mining and Technology, 2013. | |
19 | 邵志翔, 亢银虎, 卢啸风. 计及脱硫方式的CFB锅炉碳排放规律研究[J]. 电力学报, 2023, 38 (4): 278- 286. |
SHAO Zhixiang, KANG Yinhu, LU Xiaofeng. Study on carbon emission law of CFB boiler considering desulfurization method[J]. Journal of Electric Power, 2023, 38 (4): 278- 286. | |
20 | VASSILEV S V, VASSILEVA C G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour[J]. Fuel, 2007, 86 (10/11): 1490- 1512. |
21 |
YAN P F, MA Z G, LI H B, et al. Laboratory tests, field application and carbon footprint assessment of cement-stabilized pure coal solid wastes as pavement base materials[J]. Construction and Building Materials, 2023, 366, 130265.
DOI |
22 | CELLURA M, CUSENZA M A, LONGO S. Energy-related GHG emissions balances: IPCC versus LCA[J]. Science of the Total Environment, 2018, 628, 1328- 1339. |
23 | 刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34 (2): 248- 258. |
LIU Mingda, MENG Jijun, LIU Bihan. Progress in the studies of carbon emission estimation[J]. Tropical Geography, 2014, 34 (2): 248- 258. | |
24 | 中华人民共和国生态环境部. 企业温室气体排放核算与报告指南发电设施[R/OL]. (2022-12-21) [2023-06-30]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html. |
25 |
ROSENTRETER J A, LARUELLE G G, BANGE H W, et al. Coastal vegetation and estuaries are collectively a greenhouse gas sink[J]. Nature Climate Change, 2023, 13 (6): 579- 587.
DOI |
26 | ZAMPORI L, PANT R. Suggestions for updating the Product Environmental Footprint (PEF) method[M]. Publications Office of the European Union: Luxembourg, 2019. |
27 | 中国工业节能与清洁生产协会. T/CIECCPA 055-2023燃煤发电产品碳足迹量化与评价方法[S]. 北京: 中国工业节能与清洁生产协会, 2023: 4–5. |
28 |
TAO M, CHENG W Q, NIE K M, et al. Life cycle assessment of underground coal mining in China[J]. Science of the Total Environment, 2022, 805, 150231.
DOI |
29 |
SONG X C, DU S, DENG C N, et al. Carbon emissions in China's steel industry from a life cycle perspective: Carbon footprint insights[J]. Journal of Environmental Sciences, 2025, 148, 650- 664.
DOI |
30 | 彭美春, 朱兵禄, 胡红斐, 等. 重型货运车辆碳排放特性研究[J]. 安全与环境学报, 2016, 16 (1): 269- 272. |
PENG Meichun, ZHU Binglu, HU Hongfei, et al. Study on the carbon emission characteristics of the heavy duty freight trucks[J]. Journal of Safety and Environment, 2016, 16 (1): 269- 272. | |
31 | 生态环保部. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知[EB/OL]. (2023-02-04) [2023-10-23]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html. |
32 |
侯萍, 王洪涛, 张浩, 等. 用于组织和产品碳足迹的中国电力温室气体排放因子[J]. 中国环境科学, 2012, 32 (6): 961- 967.
DOI |
HOU Ping, WANG Hongtao, ZHANG Hao, et al. GreenHouse gas emission factors of Chinese power grids for organization and product carbon footprint[J]. China Environmental Science, 2012, 32 (6): 961- 967.
DOI |
|
33 |
OROZCO C, BABEL S, TANGTERMSIRIKUL S, et al. Comparison of environmental impacts of fly ash and slag as cement replacement materials for mass concrete and the impact of transportation[J]. Sustainable Materials and Technologies, 2024, 39, e00796.
DOI |
34 | 李莹, 段鹏选, 倪文, 等. 基于生命周期的工业副产石膏制备胶凝材料碳足迹评价[J]. 硅酸盐通报, 2023, 42 (6): 1921- 1930. |
LI Ying, DUAN Pengxuan, NI Wen, et al. Carbon footprint assessment of cementitious materials prepared from industrial by-product gypsum based on life cycle[J]. Bulletin of the Chinese Ceramic Society, 2023, 42 (6): 1921- 1930. | |
35 |
NATH P, SARKER P K, BISWAS W K. Effect of fly ash on the service life, carbon footprint and embodied energy of high strength concrete in the marine environment[J]. Energy and Buildings, 2018, 158, 1694- 1702.
DOI |
36 |
LIANG X Y, WANG Z H, ZHOU Z J, et al. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China[J]. Journal of Cleaner Production, 2013, 39, 24- 31.
DOI |
37 | 刘韵, 师华定, 曾贤刚. 基于全生命周期评价的电力企业碳足迹评估: 以山西省吕梁市某燃煤电厂为例[J]. 资源科学, 2011, 33 (4): 653- 658. |
LIU Yun, SHI Huading, ZENG Xiangang. A life-cycle carbon footprint assessment of electric power companies[J]. Resources Science, 2011, 33 (4): 653- 658. | |
38 |
JUNG H S, RYOO S G, KANG Y T. Life cycle environmental impact assessment of Taean coal power plant with CO2 capture module[J]. Journal of Cleaner Production, 2022, 357, 131663.
DOI |
39 |
PETRESCU L, BONALUMI D, VALENTI G, et al. Life Cycle Assessment for supercritical pulverized coal power plants with post-combustion carbon capture and storage[J]. Journal of Cleaner Production, 2017, 157, 10- 21.
DOI |
40 |
RASHEED R, JAVED H, RIZWAN A, et al. Life cycle assessment of a cleaner supercritical coal-fired power plant[J]. Journal of Cleaner Production, 2021, 279, 123869.
DOI |
41 |
KOORNNEEF J, VAN KEULEN T, FAAIJ A, et al. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2[J]. International Journal of Greenhouse Gas Control, 2008, 2 (4): 448- 467.
DOI |
42 |
WU X D, GUO J L, CHEN G Q. The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China[J]. Energy Policy, 2018, 117, 358- 369.
DOI |
43 | 孙友源, 郑张, 秦亚琦, 等. 火电机组碳排放特性研究及管理建议[J]. 中国电力, 2018, 51 (3): 144- 149, 169. |
SUN Youyuan, ZHENG Zhang, QIN Yaqi, et al. Study on carbon emission characteristics and suggestions on carbon emission management of coal-fired power plant[J]. Electric Power, 2018, 51 (3): 144- 149, 169. | |
44 | 宋铜铜. 燃煤电厂碳排放强度核算及影响因素研究[D]. 北京: 华北电力大学, 2021. |
SONG Tongtong. Study on accounting and influencing factors of carbon emission intensity of coal-fired power plants[D]. Beijing: North China Electric Power University, 2021. | |
45 | 郭喜燕, 刘嘉康, 白雪, 等. 基于碳排放特性及碳交易规则的热电联产机组经济性分析[J]. 热力发电, 2023, 52 (4): 14- 23. |
GUO Xiyan, LIU Jiakang, BAI Xue, et al. Economic analysis of cogeneration units based on carbon emission characteristics and carbon trading rules[J]. Thermal Power Generation, 2023, 52 (4): 14- 23. | |
46 | 王宁玲, 刘嘉康, 陈宏彬, 等. 计及碳交易和调峰灵活性的多场景热电负荷优化分配[J]. 华北电力大学学报(自然科学版), 2023, 50 (6): 76- 84. |
WANG Ningling, LIU Jiakang, CHEN Hongbin, et al. Optimal thermoelectric load dispatching and operation considering carbon trading and peak shaving[J]. Journal of North China Electric Power University (Natural Science Edition), 2023, 50 (6): 76- 84. |
[1] | 徐祥海, 商佳宜, 赵天煜, 龚莺飞, 何卫斌, 汤亚宸. 考虑碳排放限制与市场参与的储能利润优化[J]. 中国电力, 2025, 58(3): 204-212. |
[2] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
[3] | 王栋, 冯景丽, 李达, 牛静伟, 李军. 基于区块链的园区碳排放可信监测模型[J]. 中国电力, 2024, 57(7): 182-187. |
[4] | 吴静, 刘轩宇, 李响, 齐笑言, 李成俊, 张忠. 考虑网损的电力系统节点边际碳势理论研究与建模[J]. 中国电力, 2024, 57(6): 215-224. |
[5] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[6] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[7] | 李祥光, 谭青博, 李帆琪, 李旭东, 谭忠富. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125. |
[8] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[9] | 李虎军, 张栋, 吕梦璇, 邓方钊, 杨萌, 元博. 考虑碳排放约束的新能源与调峰资源优化配置方法[J]. 中国电力, 2024, 57(4): 42-51. |
[10] | 张娜, 赵琳, 商文颖, 吉星, 李佳, 黄玉辉. 基于STIRPAT模型的大连市全流程碳足迹溯源[J]. 中国电力, 2024, 57(1): 133-139. |
[11] | 张丽, 刘青雷, 张宏伟. 基于改进二进制粒子群算法的家庭负荷优化调度策略[J]. 中国电力, 2023, 56(5): 118-128. |
[12] | 任鑫, 王渡, 金亚飞, 王志刚. 基于能耗、经济性及碳排放的热电联产机组运行优化[J]. 中国电力, 2023, 56(4): 201-210. |
[13] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
[14] | 邱忠涛, 金艳鸣, 徐沈智. 全国碳市场扩容下电力平均排放因子选择对高耗能产业的影响分析[J]. 中国电力, 2023, 56(12): 1-7. |
[15] | 汤芳, 代红才, 张宁, 吴越, 薛美美, 陈睿. 能耗双控向碳排放双控转变影响分析及推进路径设计[J]. 中国电力, 2023, 56(12): 255-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||