中国电力 ›› 2024, Vol. 57 ›› Issue (1): 133-139.DOI: 10.11930/j.issn.1004-9649.202310008
张娜1(), 赵琳1(
), 商文颖1(
), 吉星1, 李佳2(
), 黄玉辉3
收稿日期:
2023-10-08
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
张娜(1986—),女,博士,高级工程师,从事电力市场建设研究,E-mail:zn_jyy@126.com基金资助:
Na ZHANG1(), Lin ZHAO1(
), Wenying SHANG1(
), Xing JI1, Jia LI2(
), Yuhui HUANG3
Received:
2023-10-08
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
以大连市为研究对象,测算大连市2010—2020年的能源消费碳足迹,计算碳足迹产值、碳足迹强度及生态压力,并以大连市2019年的数据为研究对象分析及计算电力等重点行业的碳排放。研究结果表明:1)从各能源类型来看,2010—2020年石油利用的碳足迹最大,煤炭次之,天然气占比最小;从重点行业来看,2019年电力行业最高,石化行业次之;大连的能源利用效率在2010—2014年不断提高,单位土地面积的产值提高较快,碳足迹带来的经济价值增长速度超过GDP增速,该阶段经济增长不依赖于化石能源;2)2010—2020年各种能源利用产生的碳足迹及其占比由高到低依次为煤炭、石油、天然气,煤炭利用所占的碳足迹比例逐年下降,石油与天然气与之相反。
张娜, 赵琳, 商文颖, 吉星, 李佳, 黄玉辉. 基于STIRPAT模型的大连市全流程碳足迹溯源[J]. 中国电力, 2024, 57(1): 133-139.
Na ZHANG, Lin ZHAO, Wenying SHANG, Xing JI, Jia LI, Yuhui HUANG. Whole Process Carbon Footprint Traceability of Dalian City Based on STIRPAT Model[J]. Electric Power, 2024, 57(1): 133-139.
行业名称 | CO2排放 量/Mt | 主要排放源 | 下调10%该指标 影响下降的CO2 排放量/Mt | 敏感性分析 | ||||
电力行业 | 49.93 | 煤炭 | 4.99117 | 0.099963 | ||||
柴油 | 0.00105 | 0.000021 | ||||||
燃料油 | 0.00023 | 0.000005 | ||||||
建材行业 | 5.59 | 烟煤 | 0.30580 | 0.054705 | ||||
电力 | 0.22719 | 0.040642 | ||||||
燃料油 | 0.01107 | 0.001980 | ||||||
钢铁行业 | 4.69 | 煤炭 | 0.06713 | 0.014313 | ||||
焦炭 | 0.05038 | 0.010742 | ||||||
熔剂消耗 | 0.02457 | 0.005239 | ||||||
有色行业 | 0.03 | 焦炭 | 0.00171 | 0.057000 | ||||
天然气 | 0.00078 | 0.026000 | ||||||
煤 | 0.00008 | 0.002667 | ||||||
石化行业 | 24.02 | 热力购买量 | 0.74640 | 0.031074 | ||||
烟煤消费量 | 0.70766 | 0.029461 | ||||||
无烟煤消费量 | 0.52065 | 0.021676 | ||||||
化工行业 | 6.96 | 烟煤 | 0.45860 | 0.065891 | ||||
热力 | 0.31253 | 0.044904 | ||||||
电力 | 0.14783 | 0.021240 | ||||||
造纸行业 | 0.22 | 净电 | 0.00966 | 0.043909 | ||||
洗煤消费量 | 0.00827 | 0.037591 | ||||||
生产过程排放 | 0.00258 | 0.011727 | ||||||
民航行业 | 0.01 | 燃料油 | 0.00039 | 0.039000 | ||||
煤油 | 0.00031 | 0.031000 | ||||||
净电 | 0.00030 | 0.030000 |
表 1 重点行业的排放情况、主要排放源及敏感性分析
Table 1 Emission situation, main emission sources and sensitivity analysis of key industries
行业名称 | CO2排放 量/Mt | 主要排放源 | 下调10%该指标 影响下降的CO2 排放量/Mt | 敏感性分析 | ||||
电力行业 | 49.93 | 煤炭 | 4.99117 | 0.099963 | ||||
柴油 | 0.00105 | 0.000021 | ||||||
燃料油 | 0.00023 | 0.000005 | ||||||
建材行业 | 5.59 | 烟煤 | 0.30580 | 0.054705 | ||||
电力 | 0.22719 | 0.040642 | ||||||
燃料油 | 0.01107 | 0.001980 | ||||||
钢铁行业 | 4.69 | 煤炭 | 0.06713 | 0.014313 | ||||
焦炭 | 0.05038 | 0.010742 | ||||||
熔剂消耗 | 0.02457 | 0.005239 | ||||||
有色行业 | 0.03 | 焦炭 | 0.00171 | 0.057000 | ||||
天然气 | 0.00078 | 0.026000 | ||||||
煤 | 0.00008 | 0.002667 | ||||||
石化行业 | 24.02 | 热力购买量 | 0.74640 | 0.031074 | ||||
烟煤消费量 | 0.70766 | 0.029461 | ||||||
无烟煤消费量 | 0.52065 | 0.021676 | ||||||
化工行业 | 6.96 | 烟煤 | 0.45860 | 0.065891 | ||||
热力 | 0.31253 | 0.044904 | ||||||
电力 | 0.14783 | 0.021240 | ||||||
造纸行业 | 0.22 | 净电 | 0.00966 | 0.043909 | ||||
洗煤消费量 | 0.00827 | 0.037591 | ||||||
生产过程排放 | 0.00258 | 0.011727 | ||||||
民航行业 | 0.01 | 燃料油 | 0.00039 | 0.039000 | ||||
煤油 | 0.00031 | 0.031000 | ||||||
净电 | 0.00030 | 0.030000 |
1 | 苏志鹏, 王莉, 梁欣怡, 等. 考虑阶梯式碳交易及综合需求响应的虚拟电厂优化调度[J]. 中国电力, 2023, 56 (12): 174- 182. |
SU Zhipeng, WANG Li, LIANG Xinyi, et al. Optimal dispatch of virtual power plant considering stepped carbon trading and comprehensive demand response[J]. Electric Power, 2023, 56 (12): 174- 182. | |
2 | 李强, 王尧, 胡迎迎, 等. 考虑碳交易成本的输储多阶段协调规划方法[J]. 中国电力, 2023, 56 (12): 199- 205. |
LI Qiang, WANG Yao, HU Yingying, et al. Multi-stage coordinated planning method for transmission network and energy storage considering carbon trading cost[J]. Electric Power, 2023, 56 (12): 199- 205. | |
3 | 贺文, 陈珍萍, 胡伏原, 等. 基于一致性的综合能源系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51 (19): 42- 53. |
HE Wen, CHEN Zhenping, HU Fuyuan, et al. Consensus-based low-carbon economic dispatching of integrated energy systems[J]. Power System Protection and Control, 2023, 51 (19): 42- 53. | |
4 | 马君亮, 王智冬, 张述铭. 考虑县域光伏潜力评估的源网荷储协同规划[J]. 东北电力大学学报, 2023, 43 (3): 82- 90. |
MA Junliang, WANG Zhidong, ZHANG Shuming. Collaborative planning of source-grid-load-storage considering county PV potential assessment[J]. Journal of Northeast Electric Power University, 2023, 43 (3): 82- 90. | |
5 | 朱灿元, 杨超, 李舒涛, 等. 考虑清洁能源与储能的分布式数据中心低碳调度策略[J]. 智慧电力, 2023, 51 (2): 16- 23. |
ZHU Canyuan, YANG Chao, LI Shutao, et al. Low-carbon scheduling strategy for distributed data centers considering clean energy and energy storage[J]. Smart Power, 2023, 51 (2): 16- 23. | |
6 |
TOMÁS M, LÓPEZ L A, MONSALVE F. Carbon footprint, municipality size and rurality in Spain: inequality and carbon taxation[J]. Journal of Cleaner Production, 2020, 266, 121798.
DOI |
7 |
杨传明. 新旧常态中国产业全碳足迹复杂网络比较[J]. 自然资源学报, 2020, 35 (2): 313- 328.
DOI |
YANG Chuanming. A comparative study on the complex networks of China’s industrial total carbon footprint in the new and old normal periods[J]. Journal of Natural Resources, 2020, 35 (2): 313- 328.
DOI |
|
8 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China’s power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
9 |
FU W, LUO M C, CHEN J C, et al. Carbon footprint and carbon carrying capacity of vegetation in ecologically fragile areas: a case study of Yunnan[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 120, 102904.
DOI |
10 | 孙丽文, 韩莹, 杜娟. 京津冀高能耗产业碳足迹的影响因素: 基于de Bruyn模型[J]. 技术经济, 2019, 38 (8): 86- 92, 118. |
SUN Liwen, HAN Ying, DU Juan. Influencing factors of carbon footprint of high energy consumption industry in Beijing, Tianjin and Hebei: based on de Bruyn model[J]. Technology Economics, 2019, 38 (8): 86- 92, 118. | |
11 | 石羽, 运迎霞, 刘冲, 等. 辽宁中部城市群建筑碳足迹[J]. 应用生态学报, 2017, 28 (6): 2040- 2046. |
SHI Yu, YUN Yingxia, LIU Chong, et al. Carbon footprint of buildings in the urban agglomeration of central Liaoning, China[J]. Chinese Journal of Applied Ecology, 2017, 28 (6): 2040- 2046. | |
12 |
ONAT N C, KUCUKVAR M. Carbon footprint of construction industry: a global review and supply chain analysis[J]. Renewable and Sustainable Energy Reviews, 2020, 124, 109783.
DOI |
13 |
SCHUELER M, HANSEN S, PAULSEN H M. Discrimination of milk carbon footprints from different dairy farms when using IPCC Tier 1 methodology for calculation of GHG emissions from managed soils[J]. Journal of Cleaner Production, 2018, 177, 899- 907.
DOI |
14 | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56 (3): 162- 172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56 (3): 162- 172. | |
15 | 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49 (10): 1- 11. |
CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49 (10): 1- 11. | |
16 | 黄大为, 李赛龙, 孔令国. 计及中长期合同电量分解与风电报价的日前市场出清模型研究[J]. 东北电力大学学报, 2023, 43 (4): 45- 56. |
HUANG Dawei, LI Sailong, KONG Lingguo. Research on day-ahead electricity market clearing ModelConsidering medium and long-term ContractsDecomposition and wind power producer bidding[J]. Journal of Northeast Electric Power University, 2023, 43 (4): 45- 56. | |
17 |
HU J M, LIU G Y, MENG F X, et al. Subnational carbon flow pattern analysis using multi-scale input-output model[J]. Ecological Modelling, 2020, 431, 109138.
DOI |
18 | 彭水军, 张文城, 孙传旺. 中国生产侧和消费侧碳排放量测算及影响因素研究[J]. 经济研究, 2015, 50 (1): 168- 182. |
PENG Shuijun, ZHANG Wencheng, SUN Chuanwang. China’s production-based and consumption-based carbon emissions and their determinants[J]. Economic Research Journal, 2015, 50 (1): 168- 182. | |
19 | 黄景光, 熊华健, 李振兴, 等. 基于生命周期法和碳权交易的综合能源系统低碳经济调度[J]. 电测与仪表, 2022, 59 (3): 82- 91. |
HUANG Jingguang, XIONG Huajian, LI Zhenxing, et al. Low-carbon economic dispatch of integrated energy system based on life cycle method and carbon trading[J]. Electrical Measurement & Instrumentation, 2022, 59 (3): 82- 91. | |
20 |
LUO W, ZHANG Y R, GAO Y L, et al. Life cycle carbon cost of buildings under carbon trading and carbon tax system in China[J]. Sustainable Cities and Society, 2021, 66, 102509.
DOI |
21 | 杨花, 杜斌, 吕锋骅, 等. 基于IPCC排放清单和LEAP模型的山西省CO2排放研究[J]. 环境污染与防治, 2014, 36 (3): 103- 109. |
YANG Hua, DU Bin, LV Fenghua, et al. Study on CO2 emissions in Shanxi Province base on IPCC listing and LEAP model[J]. Environmental Pollution & Control, 2014, 36 (3): 103- 109. | |
22 | 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论, 2020, 32 (12): 283- 294. |
ZHANG Guoxing, SU Zhaoxian. Analysis of influencing factors and scenario prediction of transportation carbon emissions in the Yellow River Basin[J]. Management Review, 2020, 32 (12): 283- 294. | |
23 | 王兴民, 吴静, 白冰, 等. 中国CO2排放的空间分异与驱动因素: 基于198个地级及以上城市数据的分析[J]. 经济地理, 2020, 40 (11): 29- 38. |
WANG Xingmin, WU Jing, BAI Bing, et al. Spatial differentiation and driving factors of CO2 emissions: analysis based on 198 cities at prefecture level and above in China[J]. Economic Geography, 2020, 40 (11): 29- 38. | |
24 | 曲嘉伟, 朱乐为, 刘泽宇, 等. 计及压缩空气储能的综合能源微网可靠性评估[J]. 东北电力大学学报, 2022, 42 (6): 8- 18, 105. |
QU Jiawei, ZHU Lewei, LIU Zeyu, et al. Reliability assessment for integrated energy microgrid system with compressed air energy storage[J]. Journal of Northeast Electric Power University, 2022, 42 (6): 8- 18, 105. | |
25 | 李怀慎, 夏能弘, 张俊. 地铁杂散电流影响下的地表电位计算及敏感性因素分析[J]. 电力科学与技术学报, 2023, 38 (2): 105- 113. |
LI Huaishen, XIA Nenghong, ZHANG Jun. Calculation of surface potential and analysis of sensitivity factors under the influence of stray current in metro systems[J]. Journal of Electric Power Science and Technology, 2023, 38 (2): 105- 113. |
[1] | 徐祥海, 商佳宜, 赵天煜, 龚莺飞, 何卫斌, 汤亚宸. 考虑碳排放限制与市场参与的储能利润优化[J]. 中国电力, 2025, 58(3): 204-212. |
[2] | 李江, 范袁铮, 刘博. 计及水泥厂直接碳排放碳责任的源-荷低碳优化运行方法[J]. 中国电力, 2025, 58(1): 141-152. |
[3] | 王栋, 冯景丽, 李达, 牛静伟, 李军. 基于区块链的园区碳排放可信监测模型[J]. 中国电力, 2024, 57(7): 182-187. |
[4] | 刘含笑, 单思珂, 魏书洲, 于立元, 王帅, 刘美玲, 崔盈. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57(7): 227-237. |
[5] | 吴静, 刘轩宇, 李响, 齐笑言, 李成俊, 张忠. 考虑网损的电力系统节点边际碳势理论研究与建模[J]. 中国电力, 2024, 57(6): 215-224. |
[6] | 王一蓉, 陈浩林, 林立身, 唐进. 考虑电力行业碳排放的全国碳价预测[J]. 中国电力, 2024, 57(5): 79-87. |
[7] | 李汶龙, 周云, 罗祾, 陈甜甜, 冯冬涵. 计及现货交易的电能量交易全环节用电碳责任分摊[J]. 中国电力, 2024, 57(5): 99-112. |
[8] | 李祥光, 谭青博, 李帆琪, 李旭东, 谭忠富. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125. |
[9] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[10] | 李虎军, 张栋, 吕梦璇, 邓方钊, 杨萌, 元博. 考虑碳排放约束的新能源与调峰资源优化配置方法[J]. 中国电力, 2024, 57(4): 42-51. |
[11] | 张丽, 刘青雷, 张宏伟. 基于改进二进制粒子群算法的家庭负荷优化调度策略[J]. 中国电力, 2023, 56(5): 118-128. |
[12] | 任鑫, 王渡, 金亚飞, 王志刚. 基于能耗、经济性及碳排放的热电联产机组运行优化[J]. 中国电力, 2023, 56(4): 201-210. |
[13] | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56(3): 162-172. |
[14] | 邱忠涛, 金艳鸣, 徐沈智. 全国碳市场扩容下电力平均排放因子选择对高耗能产业的影响分析[J]. 中国电力, 2023, 56(12): 1-7. |
[15] | 汤芳, 代红才, 张宁, 吴越, 薛美美, 陈睿. 能耗双控向碳排放双控转变影响分析及推进路径设计[J]. 中国电力, 2023, 56(12): 255-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||