中国电力 ›› 2024, Vol. 57 ›› Issue (6): 215-224.DOI: 10.11930/j.issn.1004-9649.202305075
吴静1(), 刘轩宇2(
), 李响1(
), 齐笑言1, 李成俊1, 张忠2
收稿日期:
2023-05-16
接受日期:
2023-09-19
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
吴静(1972—),女,硕士,高级工程师,从事电力环境保护研究,E-mail:1822052970@qq.com基金资助:
Jing WU1(), Xuanyu LIU2(
), Xiang LI1(
), Xiaoyan QI1, Chengjun LI1, Zhong ZHANG2
Received:
2023-05-16
Accepted:
2023-09-19
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
用于电力系统碳排放计算的宏观核算法和碳流分析法未考虑网损、阻塞因素对电网边际碳排放的影响。为实现电网碳排放指标的精细化分析,建立考虑网损的电力系统节点边际碳势分析模型。考虑火电机组煤耗特性建立了机组的边际碳势模型;基于交流潮流模型,建立电网网损灵敏度模型;进而提出电力系统节点边际碳势的计算方法,并考虑网络阻塞因素进一步改进了该方法。采用IEEE 14节点系统和某500 kV实际系统算例验证了所建模型的合理性和适用性,分别分析了低碳和非低碳调度模式下节点碳势的变化规律;发现考虑网损后节点的正、负向边际碳势存在一定差异;网损因素也使得电网各节点边际碳势各异,考虑网损的模型可提供更为准确的节点边际碳势信息,可用于开展较为精准的实时碳排放分析。
吴静, 刘轩宇, 李响, 齐笑言, 李成俊, 张忠. 考虑网损的电力系统节点边际碳势理论研究与建模[J]. 中国电力, 2024, 57(6): 215-224.
Jing WU, Xuanyu LIU, Xiang LI, Xiaoyan QI, Chengjun LI, Zhong ZHANG. Research and Modelling of Bus Marginal Carbon Intensity for Power Systems Considering Network Losses[J]. Electric Power, 2024, 57(6): 215-224.
节点 | 出力/MW | 煤耗系数 | 碳排放 系数/% | |||||||||
最小 | 最大 | a/ (t·(MW2·h)–1) | b/ (t·(MW·h)–1) | c/(t·h–1) | ||||||||
1 | 100 | 200 | 0.000338 | 0.2298 | 4.975 | 2.37 | ||||||
2 | 60 | 120 | 0.000421 | 0.2127 | 4.300 | 2.63 | ||||||
6 | 20 | 50 | 0.000677 | 0.2097 | 1.881 | 2.57 | ||||||
8 | 10 | 20 | 0.000927 | 0.2128 | 1.280 | 2.40 |
表 1 发电机参数
Table 1 Generator parameters
节点 | 出力/MW | 煤耗系数 | 碳排放 系数/% | |||||||||
最小 | 最大 | a/ (t·(MW2·h)–1) | b/ (t·(MW·h)–1) | c/(t·h–1) | ||||||||
1 | 100 | 200 | 0.000338 | 0.2298 | 4.975 | 2.37 | ||||||
2 | 60 | 120 | 0.000421 | 0.2127 | 4.300 | 2.63 | ||||||
6 | 20 | 50 | 0.000677 | 0.2097 | 1.881 | 2.57 | ||||||
8 | 10 | 20 | 0.000927 | 0.2128 | 1.280 | 2.40 |
节点编号 | 火电机组 碳势 | 节点平均 碳势 | 节点正向边际 碳势 | 节点负向边际 碳势 | ||||
1 | 0.743 | 0.743 | 0.687 | 0.712 | ||||
2 | 0.793 | 0.770 | 0.701 | 0.726 | ||||
3 | 0.605 | 0.741 | 0.767 | |||||
4 | 0.761 | 0.726 | 0.751 | |||||
5 | 0.754 | 0.716 | 0.742 | |||||
6 | 0.723 | 0.726 | 0.710 | 0.735 | ||||
7 | 0.721 | 0.729 | 0.755 | |||||
8 | 0.709 | 0.709 | 0.729 | 0.755 | ||||
9 | 0.730 | 0.731 | 0.757 | |||||
10 | 0.726 | 0.732 | 0.758 | |||||
11 | 0.726 | 0.724 | 0.749 | |||||
12 | 0.726 | 0.721 | 0.747 | |||||
13 | 0.726 | 0.726 | 0.752 | |||||
14 | 0.727 | 0.744 | 0.771 |
表 2 发电机碳势与节点碳势
Table 2 Carbon intensity of generators and buses 单位:t/(MW·h)
节点编号 | 火电机组 碳势 | 节点平均 碳势 | 节点正向边际 碳势 | 节点负向边际 碳势 | ||||
1 | 0.743 | 0.743 | 0.687 | 0.712 | ||||
2 | 0.793 | 0.770 | 0.701 | 0.726 | ||||
3 | 0.605 | 0.741 | 0.767 | |||||
4 | 0.761 | 0.726 | 0.751 | |||||
5 | 0.754 | 0.716 | 0.742 | |||||
6 | 0.723 | 0.726 | 0.710 | 0.735 | ||||
7 | 0.721 | 0.729 | 0.755 | |||||
8 | 0.709 | 0.709 | 0.729 | 0.755 | ||||
9 | 0.730 | 0.731 | 0.757 | |||||
10 | 0.726 | 0.732 | 0.758 | |||||
11 | 0.726 | 0.724 | 0.749 | |||||
12 | 0.726 | 0.721 | 0.747 | |||||
13 | 0.726 | 0.726 | 0.752 | |||||
14 | 0.727 | 0.744 | 0.771 |
1 | 代贤忠. 碳中和对能源领域的影响[EB/OL]. (2021-10-17)[2023-04-09]. https://baijiahao.baidu.com/s?id=1702895338045951179&wfr=spider&for=pc. |
2 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
3 | 董福贵, 夏美娟, 李婉莹. 基于PSO-GWO的省级能耗强度预测与碳减排潜力估算[J]. 中国电力, 2023, 56 (9): 226- 234. |
DONG Fugui, XIA Meijuan, LI Wanying. Prediction of provincial energy consumption intensity and estimation of carbon emission reduction potential based on PSO-GWO[J]. Electric Power, 2023, 56 (9): 226- 234. | |
4 | 王小飞, 任洪波, 吴琼, 等. 考虑中长期碳减排约束的区域综合能源系统多阶段动态规划[J]. 中国电力, 2023, 56 (11): 185- 196. |
WANG Xiaofei, REN Hongbo, WU Qiong, et al. Multi-stage dynamic plan of regional integrated energy system considering medium and long-term carbon emission reduction constraints[J]. Electric Power, 2023, 56 (11): 185- 196. | |
5 | 陈丽霞, 孙弢, 周云, 等. 电力系统发电侧和负荷侧共同碳责任分摊方法[J]. 电力系统自动化, 2018, 42 (19): 106- 111. |
CHEN Lixia, SUN Tao, ZHOU Yun, et al. Method of carbon obligation allocation between generation side and demand side in power system[J]. Automation of Electric Power Systems, 2018, 42 (19): 106- 111. | |
6 |
KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow from generation to demand: a network-based model[J]. IEEE Transactions on Smart Grid, 2015, 6 (5): 2386- 2394.
DOI |
7 | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42 (8): 2830- 2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism study and benefit analysis on power system low carbon demand response based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42 (8): 2830- 2842. | |
8 | 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46 (5): 1683- 1691. |
WANG C Q, CHEN Y, WEN F S, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46 (5): 1683- 1691. | |
9 | 李岩松, 刘启智, 张朕搏, 等. 基于电网功率分布的碳排放流计算方法[J]. 电网技术, 2017, 41 (3): 840- 844. |
LI Yansong, LIU Qizhi, ZHANG Zhenbo, et al. Algorithm of carbon emission flow based on power distribution[J]. Power System Technology, 2017, 41 (3): 840- 844. | |
10 | 周全, 冯冬涵, 徐长宝, 等. 负荷侧碳排放责任直接分摊方法的比较研究[J]. 电力系统自动化, 2015, 39 (17): 153- 159. |
ZHOU Quan, FENG Donghan, XU Changbao, et al. Methods for allocating carbon obligation in demand side: a comparative study[J]. Automation of Electric Power Systems, 2015, 39 (17): 153- 159. | |
11 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46 (3): 821- 833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46 (3): 821- 833. | |
12 |
WANG X, GONG Y, JIANG C W. Regional carbon emission management based on probabilistic power flow with correlated stochastic variables[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 1094- 1103.
DOI |
13 |
SHEN W, QIU J, MENG K, et al. Low-carbon electricity network transition considering retirement of aging coal generators[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4193- 4205.
DOI |
14 |
DENG L R, LI Z S, SUN H B, et al. Generalized locational marginal pricing in a heat-and-electricity-integrated market[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6414- 6425.
DOI |
15 |
ZHONG W F, XIE K, LIU Y, et al. Nash mechanisms for market design based on distribution locational marginal prices[J]. IEEE Transactions on Power Systems, 2022, 37 (6): 4297- 4309.
DOI |
16 |
BAI L Q, WANG J H, WANG C S, et al. Distribution locational marginal pricing (DLMP) for congestion management and voltage support[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4061- 4073.
DOI |
17 |
WANG Y Q, QIU J, TAO Y C. Optimal power scheduling using data-driven carbon emission flow modelling for carbon intensity control[J]. IEEE Transactions on Power Systems, 2022, 37 (4): 2894- 2905.
DOI |
18 |
LV S, CHEN S, WEI Z N, et al. Power–transportation coordination: toward a hybrid economic-emission dispatch model[J]. IEEE Transactions on Power Systems, 2022, 37 (5): 3969- 3981.
DOI |
19 | 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38 (18): 5490- 5499. |
ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38 (18): 5490- 5499. | |
20 | 周孟然, 王旭, 邵帅, 等. 考虑需求响应和碳排放额度的微电网分层优化调度[J]. 中国电力, 2022, 55 (10): 45- 53. |
ZHOU Mengran, WANG Xu, SHAO Shuai, et al. Hierarchical optimal scheduling of microgrid considering demand response and carbon emission quota[J]. Electric Power, 2022, 55 (10): 45- 53. | |
21 | 陈厚合, 茅文玲, 张儒峰, 等. 基于碳排放流理论的电力系统源-荷协调低碳优化调度[J]. 电力系统保护与控制, 2021, 49 (10): 1- 11. |
CHEN Houhe, MAO Wenling, ZHANG Rufeng, et al. Low-carbon optimal scheduling of a power system source-load considering coordination based on carbon emission flow theory[J]. Power System Protection and Control, 2021, 49 (10): 1- 11. | |
22 | 卢治霖, 刘明波, 尚楠, 等. 考虑碳排放权交易市场影响的日前电力市场两阶段出清模型[J]. 电力系统自动化, 2022, 46 (10): 159- 170. |
LU Zhilin, LIU Mingbo, SHANG Nan, et al. Two-stage clearing model for day-ahead electricity market considering impact of carbon emissions trading market[J]. Automation of Electric Power Systems, 2022, 46 (10): 159- 170. | |
23 | 缑新科, 崔乐乐, 巨圆圆, 等. 火电厂机组煤耗特性曲线拟合算法研究[J]. 电力系统保护与控制, 2014, 42 (10): 84- 89. |
GOU Xinke, CUI Lele, JU Yuanyuan, et al. Study on curve fitting algorithm for thermal power plant units coal consumption[J]. Power System Protection and Control, 2014, 42 (10): 84- 89. | |
24 | 冯欣, 杨军. 考虑网络损耗的碳排放流理论改进与完善[J]. 电力自动化设备, 2016, 36 (5): 81- 86. |
FENG Xin, YANG Jun. Improvement and enhancement of carbon emission flow theory considering power loss[J]. Electric Power Automation Equipment, 2016, 36 (5): 81- 86. | |
25 | RUIZ P A, RUDKEVICH A. Analysis of marginal carbon intensities in constrained power networks[C]//2010 43rd Hawaii International Conference on System Sciences. Honolulu, HI, USA. IEEE, 2010: 1–9. |
26 | 周全. 节能减排环境下电力系统碳排放责任分摊机制研究[D]. 上海: 上海交通大学, 2016. |
ZHOU Quan. The study of carbon emission obligation allocation in power systems under the environment of energy-saving and emission-reduction[D]. Shanghai: Shanghai Jiaotong University, 2016. | |
27 | 陈厚合, 张鹏, 姜涛, 等. 基于灵敏度分析的综合能源系统运行安全性的研究[J]. 电力自动化设备, 2019, 39 (8): 95- 103. |
CHEN Houhe, ZHANG Peng, JIANG Tao, et al. Security analysis based on sensitivity analysis for integrated electric and gas energy system[J]. Electric Power Automation Equipment, 2019, 39 (8): 95- 103. | |
28 | 高慧敏, 章坚民, 江力. 基于二阶网损无功灵敏度矩阵的配电网无功补偿选点[J]. 电网技术, 2014, 38 (7): 1979- 1983. |
GAO Huimin, ZHANG Jianmin, JIANG Li. Optimal location of reactive power compensation for distribution network based on second order loss-reactive power sensitivity matrix[J]. Power System Technology, 2014, 38 (7): 1979- 1983. | |
29 | 蔡宇, 李保卫, 胡泽春, 等. 燃煤机组碳排放指标计算及影响因素分析[J]. 电网技术, 2013, 37 (5): 1185- 1189. |
CAI Yu, LI Baowei, HU Zechun, et al. Calculation of carbon emission index of coal-fired generating unit and analysis on influencing factors[J]. Power System Technology, 2013, 37 (5): 1185- 1189. | |
30 |
沈照人. 回归分析法在碳排放核查中测算发电企业燃煤发热量的应用[J]. 煤质技术, 2021, 36 (5): 69- 74.
DOI |
SHEN Zhaoren. The application of regression analysis method to measure the calorific value of coal in power generation enterprises in carbon emission verification[J]. Coal Quality Technology, 2021, 36 (5): 69- 74.
DOI |
|
31 |
康重庆, 程耀华, 孙彦龙, 等. 电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41 (18): 10- 16.
DOI |
KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive calculation method of carbon emission flow in power systems[J]. Automation of Electric Power Systems, 2017, 41 (18): 10- 16.
DOI |
|
32 | 王景亮, 张焰, 王承民, 等. 基于灵敏度分析与最优潮流的电网无功/电压考核方法[J]. 电网技术, 2005, 29 (10): 65- 69. |
WANG Jingliang, ZHANG Yan, WANG Chengmin, et al. Power system reactive power/voltage assessment based on sensitivity analysis and optimal power flow[J]. Power System Technology, 2005, 29 (10): 65- 69. | |
33 | 王洪涛, 邹斌, 张亮. 基于节点传输贡献量的省间联络线潮流近似计算[J]. 电力自动化设备, 2020, 40 (6): 135- 141. |
WANG Hongtao, ZOU Bin, ZHANG Liang. Approximate calculation of inter-provincial tie-line power flow based on node transmission contribution[J]. Electric Power Automation Equipment, 2020, 40 (6): 135- 141. | |
34 | VENKATESWARA REDDY M, MUNI B P, SARMA A V R S. Enhancement of voltage profile for IEEE 14 bus system with inter line power flow controller[C]//2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). Bengaluru, India. IEEE, 2016: 1–5. |
[1] | 周子康, 陶顺, 薛超凡, 袁威, 徐永海. 电力系统中压电网谐振关键元器件评估[J]. 中国电力, 2024, 57(2): 127-137. |
[2] | 窦真兰, 袁本峰, 张春雁, 肖国萍, 王建强. 基于可逆固体氧化物电池的风光氢综合能源系统容量规划[J]. 中国电力, 2023, 56(10): 22-32. |
[3] | 任大伟, 肖晋宇, 侯金鸣, 杜尔顺, 金晨, 周原冰. 计及多种灵活性约束和基于时序模拟的广域电力系统源-网-储协同规划方法[J]. 中国电力, 2022, 55(1): 55-63. |
[4] | 乔腾, 张益铭, 曹一家, 王力, 袁清. 基于概率可靠性评估的永磁直驱风机低电压穿越控制模型参数辨识[J]. 中国电力, 2021, 54(12): 102-111. |
[5] | 肖峰, 韩民晓, 唐晓骏, 张鑫. 含大规模光伏并网的弱送端系统的电压稳定性[J]. 中国电力, 2020, 53(11): 31-39. |
[6] | 苗淼, 刘赛, 施涛, 郭亚森, 张一清, 李俊贤. 光伏光热联合发电基地并网优化调度模型[J]. 中国电力, 2019, 52(4): 51-58. |
[7] | 郭永明, 游晓科, 刘观起. 基于灵敏度分析的直驱永磁风机并网系统小干扰稳定优化研究[J]. 中国电力, 2017, 50(2): 144-149. |
[8] | 苏卫华, 管俊, 杨熠娟, 李倩玉, 高赐威. 全寿命周期成本电网规划的灵敏度分析模型[J]. 中国电力, 2014, 47(11): 127-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||