中国电力 ›› 2024, Vol. 57 ›› Issue (2): 127-137.DOI: 10.11930/j.issn.1004-9649.202308069
收稿日期:
2023-08-17
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
周子康(1999—),男,硕士研究生,从事电能质量研究,E-mail:zkzhou10@foxmail.com基金资助:
Zikang ZHOU(), Shun TAO(
), Chaofan XUE, Wei YUAN, Yonghai XU
Received:
2023-08-17
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
模态分析法可以获得最丰富的谐振信息,现有灵敏度分析方法可以得到每种元器件对谐振影响程度的排序,但无法明确辨别谐振关键元件和谐振电路。首先,通过推导对各参与因子的物理意义进行了解释,归纳了现有的2种灵敏度分析方法;然后,考虑不同属性元器件取值范围的差异性及逆变器外特性的影响,提出了一种适用于配电网谐振关键元件和电路的识别方法;最后,通过算例分析和PSCAD仿真结果,验证了所得谐振关键元器件的准确性。该方法可以较为准确地识别出系统固有谐振的关键元器件,为研究谐波谐振问题及其抑制、事故调查分析等提供参考。
周子康, 陶顺, 薛超凡, 袁威, 徐永海. 电力系统中压电网谐振关键元器件评估[J]. 中国电力, 2024, 57(2): 127-137.
Zikang ZHOU, Shun TAO, Chaofan XUE, Wei YUAN, Yonghai XU. Key Resonance Component Evaluation of Medium-Voltage Power Systems[J]. Electric Power, 2024, 57(2): 127-137.
节点 | 参与因子 | 电压平方 | 电压平方占比 | |||
1 | 0.00232 | 66203.3 | 0.00259 | |||
2 | 0.20432 | 5184729.0 | 0.20274 | |||
3 | 0.79348 | 20322064.0 | 0.79467 |
表 1 各节点参与因子和电压平方占比
Table 1 The participates in factor and voltage square ratio of each node
节点 | 参与因子 | 电压平方 | 电压平方占比 | |||
1 | 0.00232 | 66203.3 | 0.00259 | |||
2 | 0.20432 | 5184729.0 | 0.20274 | |||
3 | 0.79348 | 20322064.0 | 0.79467 |
模态 | 谐振频次 | 谐振频率/Hz | 最大参与 因子母线 | 最大参与因子 | ||||
1 | 3.84 | 192 | 2 | 0.1033 | ||||
2 | 13.08 | 654 | 3 | 0.3653 | ||||
3 | 17.54 | 877 | 13 | 0.6615 | ||||
4 | 63.80 | 3190 | 6 | 0.0979 |
表 2 系统的谐振模态信息
Table 2 The resonance mode information of the system
模态 | 谐振频次 | 谐振频率/Hz | 最大参与 因子母线 | 最大参与因子 | ||||
1 | 3.84 | 192 | 2 | 0.1033 | ||||
2 | 13.08 | 654 | 3 | 0.3653 | ||||
3 | 17.54 | 877 | 13 | 0.6615 | ||||
4 | 63.80 | 3190 | 6 | 0.0979 |
元器件 | 基频电流 有效值(p.u.) | 谐振电流 有效值(p.u.) | 电流响应比 | |||
VSC2 | 0.003 | 42.781 | 12582.65 | |||
变压器ZT3 | 1.003 | 42.043 | 41.90 | |||
支路10-11电缆 | 0.327 | 0.908 | 2.78 | |||
支路5-11电缆 | 0.486 | 20.234 | 41.64 | |||
支路4-5电缆 | 0.217 | 11.226 | 51.66 | |||
VSC1 | 0.001 | 1.891 | 2480.98 | |||
支路5-6电缆 | 0.454 | 82.850 | 182.65 | |||
变压器ZT1 | 0.067 | 8.025 | 119.42 | |||
支路7-8架空线 | 0.025 | 0.767 | 30.42 |
表 3 部分器件上电流放大响应比
Table 3 Current amplification response ratio on some devices
元器件 | 基频电流 有效值(p.u.) | 谐振电流 有效值(p.u.) | 电流响应比 | |||
VSC2 | 0.003 | 42.781 | 12582.65 | |||
变压器ZT3 | 1.003 | 42.043 | 41.90 | |||
支路10-11电缆 | 0.327 | 0.908 | 2.78 | |||
支路5-11电缆 | 0.486 | 20.234 | 41.64 | |||
支路4-5电缆 | 0.217 | 11.226 | 51.66 | |||
VSC1 | 0.001 | 1.891 | 2480.98 | |||
支路5-6电缆 | 0.454 | 82.850 | 182.65 | |||
变压器ZT1 | 0.067 | 8.025 | 119.42 | |||
支路7-8架空线 | 0.025 | 0.767 | 30.42 |
节点 | 电压响应比 | 节点 | 电压响应比 | |||
1 | 0.61 | 8 | 27.71 | |||
2 | 2.72 | 9 | 2.02 | |||
3 | 89.92 | 10 | 2.72 | |||
4 | 29.37 | 11 | 113.35 | |||
5 | 43.99 | 12 | 139.72 | |||
6 | 2.72 | 13 | 718.77 | |||
7 | 14.52 |
表 4 谐振模态下节点电压放大响应比
Table 4 Node voltage amplification response ratio in resonant mode
节点 | 电压响应比 | 节点 | 电压响应比 | |||
1 | 0.61 | 8 | 27.71 | |||
2 | 2.72 | 9 | 2.02 | |||
3 | 89.92 | 10 | 2.72 | |||
4 | 29.37 | 11 | 113.35 | |||
5 | 43.99 | 12 | 139.72 | |||
6 | 2.72 | 13 | 718.77 | |||
7 | 14.52 |
模态 | 谐振频次 | 谐振频率/Hz | 关键元件 | |||
1 | 3.84 | 192 | 变压器1、负荷7、负荷8、节点1-2、1-6、2-6间电缆 | |||
2 | 13.08 | 654 | 节点2处电容补偿、变压器1、变压器2、节点1-2间电缆 | |||
3 | 17.54 | 877 | 变压器1、变压器3、VSC1、VSC2 | |||
4 | 63.80 | 3190 | 变压器2、变压器3、负荷5、负荷7、负荷8、节点1-6间电缆 |
表 5 各模态下谐振关键元件
Table 5 Key element of resonance in each mode
模态 | 谐振频次 | 谐振频率/Hz | 关键元件 | |||
1 | 3.84 | 192 | 变压器1、负荷7、负荷8、节点1-2、1-6、2-6间电缆 | |||
2 | 13.08 | 654 | 节点2处电容补偿、变压器1、变压器2、节点1-2间电缆 | |||
3 | 17.54 | 877 | 变压器1、变压器3、VSC1、VSC2 | |||
4 | 63.80 | 3190 | 变压器2、变压器3、负荷5、负荷7、负荷8、节点1-6间电缆 |
1 | 李朝阳. 电力系统谐波谐振概率评估方法研究[D]. 成都: 西南交通大学, 2020. |
LI Zhaoyang. Study on probabiistic assessment methods of harmonic resonance in power systems[D]. Chengdu: Southwest Jiaotong University, 2020. | |
2 | 何正友. 分布式新能源接入电网的谐波热点问题探讨[J]. 南方电网技术, 2016, 10 (3): 47- 52. |
HE Zhengyou. Discussion on harmonic hot issues of distributed new energy connected to power grid[J]. Southern Power System Technology, 2016, 10 (3): 47- 52. | |
3 | 刘洪, 李其哲, 徐晶, 等. 网孔型中压配电网组网形态、核心特征与研究展望[J]. 电力系统自动化, 2023, 47 (16): 181- 191. |
LIU Hong, LI Qizhe, XU Jing, et al. Networking morphology, key feature and research prospect of mesh-type medium-voltage distribution network[J]. Automation of Electric Power Systems, 2023, 47 (16): 181- 191. | |
4 | 窦真兰, 张春雁, 赵慧荣, 等. 含氢能汽车负荷的住宅光-氢耦合能源系统容量优化配置[J]. 中国电力, 2023, 56 (7): 54- 65. |
DOU Zhenlan, ZHANG Chunyan, ZHAO Huirong, et al. Optimal capacity configuration of residential solar-hydrogen coupling energy system with hydrogen vehicle load[J]. Electric Power, 2023, 56 (7): 54- 65. | |
5 | 韩华春, 李强, 袁晓冬. 考虑柔性氢需求的区域综合能源系统优化调度方法[J]. 电力科学与技术学报, 2022, 37 (3): 12- 18. |
HAN Huachun, LI Qiang, YUAN Xiaodong. Optimal dispatch of regional integrated energy systems considering flexible hydrogen demand[J]. Journal of Electric Power Science and Technology, 2022, 37 (3): 12- 18. | |
6 | 王鹏飞, 李世民, 张磊, 等. 基于合作博弈的风-光-综合能源系统多主体协同运行策略[J]. 智慧电力, 2023, 51 (9): 52- 59. |
WANG Pengfei, LI Shimin, ZHANG Lei, et al. Multi-agent cooperative operation strategy of wind-photovoltaic-integrated energy system based on cooperative game[J]. Smart Power, 2023, 51 (9): 52- 59. | |
7 | 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度[J]. 电力系统保护与控制, 2023, 51 (12): 122- 132. |
BI Rui, WANG Xiaogan, YUAN Huakai, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism[J]. Power System Protection and Control, 2023, 51 (12): 122- 132. | |
8 | 蔡含虎, 向月, 杨昕然. 计及需求响应的综合能源系统容量经济配置及效益分析[J]. 电力自动化设备, 2019, 39 (8): 186- 194. |
CAI Hanhu, XIANG Yue, YANG Xinran. Economic capacity allocation and benefit analysis of integrated energy system considering demand response[J]. Electric Power Automation Equipment, 2019, 39 (8): 186- 194. | |
9 | 郑伟民, 王蕾, 孙可, 等. 考虑多能流广义储能作用的配电网协调规划[J]. 电力自动化设备, 2021, 41 (7): 22- 30. |
ZHENG Weimin, WANG Lei, SUN Ke, et al. Coordinated planning of distribution network considering function of multi-energy flow generalized energy storage[J]. Electric Power Automation Equipment, 2021, 41 (7): 22- 30. | |
10 | 朱明星, 孔彬彬, 张华赢. 电缆化配电系统高频谐振频移方法[J]. 中国电力, 2021, 54 (8): 19- 26. |
ZHU Mingxing, KONG Binbin, ZHANG Huaying. High frequency resonance frequency shift method for cable distribution system[J]. Electric Power, 2021, 54 (8): 19- 26. | |
11 | 周辉, 吴耀武, 娄素华, 等. 基于模态分析和虚拟支路法的串联谐波谐振分析[J]. 中国电机工程学报, 2007, 27 (28): 84- 89. |
ZHOU Hui, WU Yaowu, LOU Suhua, et al. Series resonance analysis based on modal analysis and dummy branch method[J]. Proceedings of the CSEE, 2007, 27 (28): 84- 89. | |
12 |
BOTTURA F B, OLESKOVICZ M, LE T D, et al. Optimal positioning of power quality meters for monitoring potential conditions of harmonic resonances in a MV distribution system[J]. IEEE Transactions on Power Delivery, 2019, 34 (5): 1885- 1897.
DOI |
13 |
徐文远, 张大海. 基于模态分析的谐波谐振评估方法[J]. 中国电机工程学报, 2005, 25 (22): 89- 93.
DOI |
XU Wenyuan, ZHANG Dahai. A modal analysis method for harmonic resonance assessment[J]. Proceedings of the CSEE, 2005, 25 (22): 89- 93.
DOI |
|
14 |
AGRAWAL B L, FARMER R G. Use of frequency scanning techniques for subsynchronous resonance analysis[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98 (2): 341- 349.
DOI |
15 |
HAMMAD A, KAMWA I, VIAROUGE P, et al. Modeling and simulation of the propagation of harmonics in electric power networks. I. concepts, models, and simulation techniques. discussion[J]. IEEE Transactions on Power Delivery, 1996, 11 (1): 452- 465.
DOI |
16 | XU W, HUANG Z Y, CUI Y, et al. Harmonic resonance mode analysis[C]//IEEE Power Engineering Society General Meeting. San Francisco, CA, USA. IEEE, 2005: 2236(3): 16. |
17 | 舒万韬, 洪芦诚, 刘宁波, 等. 多逆变器并网谐振特性分析[J]. 中国电机工程学报, 2018, 38 (17): 5009- 5019, 5298. |
SHU Wantao, HONG Lucheng, LIU Ningbo, et al. An analysis on resonance characteristics of multi-inverters grid-connected system[J]. Proceedings of the CSEE, 2018, 38 (17): 5009- 5019, 5298. | |
18 | HUANG Z Y, CUI Y, XU W. Application of modal sensitivity for power system harmonic resonance analysis[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1. |
19 |
YANG C X, LIU K P, ZHENG X, et al. Modal sensitivity analysis for parallel harmonic resonance in power system[J]. Advanced Materials Research, 2013, 732/733, 1432- 1437.
DOI |
20 | 仰彩霞, 刘开培, 李建奇, 等. 谐波谐振模态灵敏度分析[J]. 电工技术学报, 2011, 26 (S1): 207- 212. |
YANG Caixia, LIU Kaipei, LI Jianqi, et al. Modal sensitivity analysis for harmonic resonance[J]. Transactions of China Electrotechnical Society, 2011, 26 (S1): 207- 212. | |
21 |
HU H T, HE Z Y, ZHANG Y F, et al. Modal frequency sensitivity analysis and application using complex nodal matrix[J]. IEEE Transactions on Power Delivery, 2014, 29 (2): 969- 971.
DOI |
22 | 陶顺, 闫亚楠, 刘云博. 基于导纳模型的并网直驱风电场高频谐振分析[J]. 中国电机工程学报, 2022, 42 (21): 7832- 7843. |
TAO Shun, YAN Yanan, LIU Yunbo. High frequency resonance analysis of power system with a D-PMSG-based wind farm based on admittance model[J]. Proceedings of the CSEE, 2022, 42 (21): 7832- 7843. | |
23 | 胡伟, 孙建军, 马谦, 等. 多逆变器并网系统谐振特性分析[J]. 电力自动化设备, 2014, 34 (7): 93- 98. |
HU Wei, SUN Jianjun, MA Qian, et al. Resonant characteristics of multi-inverter grid-connection system[J]. Electric Power Automation Equipment, 2014, 34 (7): 93- 98. | |
24 | 王磊, 张凌博. 多逆变器并网等值建模及谐振抑制优化[J]. 电力系统保护与控制, 2021, 49 (6): 19- 29. |
WANG Lei, ZHANG Lingbo. Equivalent modeling of multi-inverters connected to the grid and optimization of resonance suppression[J]. Power System Protection and Control, 2021, 49 (6): 19- 29. | |
25 | 孙白艳. 计及谐波影响的配电网电容器优化配置研究[D]. 绵阳: 西南科技大学, 2015. |
SUN Baiyan. Account harmonic effects distribution network capacitor optimization research[D]. Mianyang: Southwest University of Science and Technology, 2015. |
[1] | 吴静, 刘轩宇, 李响, 齐笑言, 李成俊, 张忠. 考虑网损的电力系统节点边际碳势理论研究与建模[J]. 中国电力, 2024, 57(6): 215-224. |
[2] | 窦真兰, 袁本峰, 张春雁, 肖国萍, 王建强. 基于可逆固体氧化物电池的风光氢综合能源系统容量规划[J]. 中国电力, 2023, 56(10): 22-32. |
[3] | 刘可, 王轩, 王杨, 王昕, 杨放南, 李剑武, 刘冬平, 郭财, 张启晟, 陈海盟. 静止无功发生器谐波模型及其对谐振影响分析[J]. 中国电力, 2022, 55(9): 174-182. |
[4] | 徐攀腾, 朱博, 喻文翔, 宋述波, 杨学广, 樊友平. 昆柳龙直流工程受端高频谐振评估及抑制[J]. 中国电力, 2022, 55(3): 9-17. |
[5] | 任大伟, 肖晋宇, 侯金鸣, 杜尔顺, 金晨, 周原冰. 计及多种灵活性约束和基于时序模拟的广域电力系统源-网-储协同规划方法[J]. 中国电力, 2022, 55(1): 55-63. |
[6] | 乔腾, 张益铭, 曹一家, 王力, 袁清. 基于概率可靠性评估的永磁直驱风机低电压穿越控制模型参数辨识[J]. 中国电力, 2021, 54(12): 102-111. |
[7] | 肖峰, 韩民晓, 唐晓骏, 张鑫. 含大规模光伏并网的弱送端系统的电压稳定性[J]. 中国电力, 2020, 53(11): 31-39. |
[8] | 苗淼, 刘赛, 施涛, 郭亚森, 张一清, 李俊贤. 光伏光热联合发电基地并网优化调度模型[J]. 中国电力, 2019, 52(4): 51-58. |
[9] | 朱武, 刘雅娟. 大型光伏电站谐波谐振机理研究[J]. 中国电力, 2018, 51(3): 121-130. |
[10] | 郭永明, 游晓科, 刘观起. 基于灵敏度分析的直驱永磁风机并网系统小干扰稳定优化研究[J]. 中国电力, 2017, 50(2): 144-149. |
[11] | 苏卫华, 管俊, 杨熠娟, 李倩玉, 高赐威. 全寿命周期成本电网规划的灵敏度分析模型[J]. 中国电力, 2014, 47(11): 127-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||