[1] 陈其飘, 游广增. 乌东德多端直流对云南电网频率稳定影响及措施研究[J]. 云南电力技术, 2019, 47(3): 27–29 CHEN Qipiao, YOU Guangzeng. Research of the influence and measures under the wudongde MTDC on frequency stability of Yunnan power grid[J]. Yunnan Electric Power, 2019, 47(3): 27–29 [2] BUCHHAGEN C, RAUSCHER C, MENZE A, et al. BorWin1 - First Experiences with harmonic interactions in converter dominated grids[C]//International ETG Congress 2015; Die Energiewende - Blueprints for the new energy age. Bonn, Germany. VDE, 2015: 1-7. [3] 冯俊杰, 邹常跃, 杨双飞, 等. 针对中高频谐振问题的柔性直流输电系统阻抗精确建模与特性分析[J]. 中国电机工程学报, 2020, 40(15): 4805–4820 FENG Junjie, ZOU Changyue, YANG Shuangfei, et al. Accurate impedance modeling and characteristic analysis of VSC-HVDC system for mid-and high-frequency resonance problems[J]. Proceedings of the CSEE, 2020, 40(15): 4805–4820 [4] 李岩, 邹常跃, 饶宏, 等. 柔性直流与极端交流系统间的谐波谐振[J]. 中国电机工程学报, 2018, 38(增刊1): 19–23 LI Yan, ZOU Changyue, RAO Hong, et al. Resonance of VSC-HVDC with extreme AC grid[J]. Proceedings of the CSEE, 2018, 38(S1): 19–23 [5] 郭贤珊, 刘斌, 梅红明, 等. 渝鄂直流背靠背联网工程交直流系统谐振分析与抑制[J]. 电力系统自动化, 2020, 44(20): 157–164 GUO Xianshan, LIU Bin, MEI Hongming, et al. Analysis and suppression of resonance between AC and DC systems in Chongqing-Hubei back-to-back HVDC project of China[J]. Automation of Electric Power Systems, 2020, 44(20): 157–164 [6] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J]. 中国电机工程学报, 2020, 40(1): 19–29, 370 GUO Xianshan, LIU Zehong, LI Yunfeng, et al. Characteristic analysis of high-frequency resonance of flexible high voltage direct current and research on its damping control strategy[J]. Proceedings of the CSEE, 2020, 40(1): 19–29, 370 [7] 王旭斌, 杜文娟, 王海风. 弱连接条件下并网VSC系统稳定性分析研究综述[J]. 中国电机工程学报, 2018, 38(6): 1593–1604, 1895 WANG Xubin, DU Wenjuan, WANG Haifeng. Stability analysis of grid-tied VSC systems under weak connection conditions[J]. Proceedings of the CSEE, 2018, 38(6): 1593–1604, 1895 [8] 陈新, 王赟程, 龚春英, 等. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7): 2082–2094, 2223 CHEN Xin, WANG Yuncheng, GONG Chunying, et al. Overview of stability research for grid-connected inverters based on impedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7): 2082–2094, 2223 [9] 翟冬玲, 韩民晓, Mukesh Kumar Das, 等. 用于低频振荡抑制的MMC的能量补偿控制[J]. 中国电机工程学报, 2019, 39(10): 2864–2875 ZHAI Dongling, HAN Minxiao, DAS M K, et al. Energy compensation control of MMC used for low frequency power oscillation damping[J]. Proceedings of the CSEE, 2019, 39(10): 2864–2875 [10] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327–2335 YANG Dongsheng, RUAN Xinbo, WU Heng. A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2014, 34(15): 2327–2335 [11] 吴恒, 阮新波, 杨东升. 弱电网条件下锁相环对LCL型并网逆变器稳定性的影响研究及锁相环参数设计[J]. 中国电机工程学报, 2014, 34(30): 5259–5268 WU Heng, RUAN Xinbo, YANG Dongsheng. Research on the stability caused by phase-locked loop for LCL-type grid-connected inverter in weak grid condition[J]. Proceedings of the CSEE, 2014, 34(30): 5259–5268 [12] 曹润彬, 聂少雄, 芮智, 等. 对称单极柔性直流输电系统不对称交流故障解析模型[J]. 南方电网技术, 2021, 15(8): 48–54,70 CAO Runbin, NIE Shaoxiong, RUI Zhi, et al. Analytical modeling of asymmetric AC faults in symmetric single-pole MMC-HVDC power transmission system[J]. Southern Power System Technology, 2021, 15(8): 48–54,70 [13] 钟庆, 冯俊杰, 王钢, 等. 基于节点阻抗矩阵的直流配电网谐振特性分析[J]. 中国电机工程学报, 2019, 39(5): 1323–1334 ZHONG Qing, FENG Junjie, WANG Gang, et al. Analysis of resonance characteristics of DC distribution network based on node impedance matrix[J]. Proceedings of the CSEE, 2019, 39(5): 1323–1334 [14] 冯俊杰. 直流配电网谐振特性分析[D]. 广州: 华南理工大学, 2019. FENG Junjie. Analysis on the resonance characteristic in DC distribution network[D]. Guangzhou: South China University of Technology, 2019. [15] 杨洁, 刘开培, 王东旭, 等. 向无源网络供电的双端柔性直流输电系统小信号稳定性分析[J]. 中国电机工程学报, 2015, 35(10): 2400–2408 YANG Jie, LIU Kaipei, WANG Dongxu, et al. Small signal stability analysis of VSC-HVSC applied to passive network[J]. Proceedings of the CSEE, 2015, 35(10): 2400–2408 [16] SUN Jian. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075–3078. [17] 张天翼, 王海风. 风电并入弱交流系统引发次同步振荡的研究方法综述[J]. 电力系统保护与控制, 2021, 49(16): 177–187 ZHANG Tianyi, WANG Haifeng. Research methods for subsynchronous oscillation induced by wind power under weak AC system: a review[J]. Power System Protection and Control, 2021, 49(16): 177–187 [18] 年珩, 朱茂玮, 徐韵扬, 等. 双闭环定交流电压控制下MMC换流站阻抗建模及稳定性分析[J]. 电力系统自动化, 2020, 44(4): 81–90 NIAN Heng, ZHU Maowei, XU Yunyang, et al. Impedance modeling and system stability analysis of MMC with double closed-loop AC voltage control[J]. Automation of Electric Power Systems, 2020, 44(4): 81–90 [19] 谢小荣, 刘华坤, 贺静波, 等. 新能源发电并网系统的小信号阻抗/导纳网络建模方法[J]. 电力系统自动化, 2017, 41(12): 26–32 XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Small-signal impedance/admittance network modeling for grid-connected renewable energy generation systems[J]. Automation of Electric Power Systems, 2017, 41(12): 26–32 [20] VIETO I, DU Xiong, NIAN Heng, et al. Frequency-domain coupling in two-level VSC small-signal dynamics[C]// 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL). Stanford, CA, USA: IEEE, 2017: 1–8. [21] 吕敬, 蔡旭. 基于谐波线性化的模块化多电平换流器阻抗建模[J]. 电力系统自动化, 2017, 41(4): 136–142 LYU Jing, CAI Xu. Harmonic linearization based impedance modeling of modular multilevel converters[J]. Automation of Electric Power Systems, 2017, 41(4): 136–142 [22] SAAD H, FILLION Y, DESCHANVRES S, et al. On resonances and harmonics in HVDC-MMC station connected to AC grid[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1565–1573. [23] ZOU Changyue, RAO Hong, XU Shukai, et al. Analysis of resonance between a VSC-HVDC converter and the AC grid[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10157–10168. [24] ZHU Jianhang, HU Jiabing, LIN Lei, et al. High-frequency oscillation mechanism analysis and suppression method of VSC-HVSC[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 8892–8896. [25] 李凌, 张野, 梁振成, 等. 模块化多电平换流器的主动谐波谐振抑制策略[J]. 广东电力, 2020, 33(3): 34–41 LI Ling, ZHANG Ye, LIANG Zhencheng, et al. Active harmonic oscillation suppression strategy for modular multilevel converter[J]. Guangdong Electric Power, 2020, 33(3): 34–41
|