[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806–2819 ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806–2819 [2] 周孝信. 中国中长期(2030—2050年)能源电力供需及传输的预测和对策//中国科学家思想录·第十三辑[M]. 北京: 科学出版社, 2017. [3] 能源革命中电网技术发展预测和对策研究项目组. 能源革命中电网及技术发展预测和对策[M]. 北京: 科学出版社, 2015. [4] 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J/OL]. 中国电力: 1–12[2022-10-24].https://kns.cnki.net/kcms/detail/11.3265.tm.20221021.1509.002.html. XU Wenzhe, ZHANG Zheren, XU Zheng. A hybrid HVDC topology suitable for large-scale pure clean energy base integration[J/OL]. Electric Power: 1–12[2022-10-24].https://kns.cnki.net/kcms/detail/11.3265.tm.20221021.1509.002.html. [5] 潘垣, 尹项根, 胡家兵, 等. 论基于柔直电网的西部风光能源集中开发与外送[J]. 电网技术, 2016, 40(12): 3621–3629 PAN Yuan, YIN Xianggen, HU Jiabing, et al. Centralized exploitation and large-scale delivery of wind and solar energies in west China based on flexible DC grid[J]. Power System Technology, 2016, 40(12): 3621–3629 [6] 丁剑, 方晓松, 宋云亭等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1–9 DING Jian, FANG Xiaosong, SONG Yunting, et al. Conception of electricity and hydrogen integrated energy network for renewable energy transmission in western China under background of carbon neutralization[J]. Automation of Electric Power Systems, 2021, 45(24): 1–9 [7] 郭小江, 赵丽莉, 汤奕, 等. 风火打捆交直流外送系统功角暂态稳定研究[J]. 中国电机工程学报, 2013, 33(22): 19–25 GUO Xiaojiang, ZHAO Lili, TANG Yi, et al. Study on angle transient stability for wind-thermal-bundled power transmitted by AC/DC system[J]. Proceedings of the CSEE, 2013, 33(22): 19–25 [8] 屠竞哲, 潘艳, 訾鹏, 等. 功角失稳与暂态过电压并存型锡盟交直流弱送端系统特性分析[J]. 电网技术, 2021, 45(4): 1496–1506 TU Jingzhe, PAN Yan, ZI Peng, et al. Ximeng AC/DC weak sending-side system characteristics with angle instability and transient overvoltage[J]. Power System Technology, 2021, 45(4): 1496–1506 [9] 雷霄, 孙栩, 王薇薇, 等. 多馈入系统直流间耦合程度量化表征方法[J]. 中国电力, 2021, 54(9): 66–73 LEI Xiao, SUN Xu, WANG Weiwei, et al. A characterization method for coupling relation in multi-infeed HVDC system[J]. Electric Power, 2021, 54(9): 66–73 [10] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999–5008 ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999–5008 [11] 姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析[J]. 中国电机工程学报, 2014, 34(34): 6007–6020 YAO Liangzhong, WU Jing, WANG Zhibing, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(34): 6007–6020 [12] 温家良, 吴锐, 彭畅, 等. 直流电网在中国的应用前景分析[J]. 中国电机工程学报, 2012, 32(13): 7–12, 185 WEN Jialiang, WU Rui, PENG Chang, et al. Analysis of DC grid prospects in China[J]. Proceedings of the CSEE, 2012, 32(13): 7–12, 185 [13] 肖晋宇, 张宇, 万磊, 等. 直流电网在全球能源互联网中的应用定位与案例研究[J]. 全球能源互联网, 2018, 1(1): 32–38 XIAO Jinyu, ZHANG Yu, WAN Lei, et al. Application of DC grid in global energy interconnection and case study[J]. Journal of Global Energy Interconnection, 2018, 1(1): 32–38 [14] 汤广福, 罗湘, 魏晓光. 多端直流输电与直流电网技术[J]. 中国电机工程学报, 2013, 33(10): 8–17, 24 TANG Guangfu, LUO Xiang, WEI Xiaoguang. Multi-terminal HVDC and DC-grid technology[J]. Proceedings of the CSEE, 2013, 33(10): 8–17, 24 [15] 张文亮, 汤涌, 曾南超. 多端高压直流输电技术及应用前景[J]. 电网技术, 2010, 34(9): 1–6 ZHANG Wenliang, TANG Yong, ZENG Nanchao. Multi-terminal HVDC transmission technologies and its application prospects in China[J]. Power System Technology, 2010, 34(9): 1–6 [16] 杜晓磊, 郭庆雷, 吴延坤, 等. 张北柔性直流电网示范工程控制系统架构及协调控制策略研究[J]. 电力系统保护与控制, 2020, 48(9): 164–173 DU Xiaolei, GUO Qinglei, WU Yankun, et al. Research on control system structure and coordination control strategy for Zhangbei Demonstration Project of MMC-HVDC Grid[J]. Power System Protection and Control, 2020, 48(9): 164–173 [17] 全球能源互联网研究院有限公司. 联研院±500 kV/3000 MW张北直流电网工程用柔直换流阀顺利通过型式试验[EB/OL]. (2017-06-19)[2022-10-28]. https://news.bjx.com.cn/html/20170609/830106.shtml. [18] 南瑞继保电气有限公司. 高压大容量柔性直流输电系统成套关键设备通过成果鉴定[EB/OL]. (2017-05-20)[2022-10-28]. http://www.nrec.com/cn/index. php/news/info/1047/2. [19] 刘高任, 许烽, 徐政, 等. 适用于直流电网的组合式高压直流断路器[J]. 电网技术, 2016, 40(1): 70–77 LIU Gaoren, XU Feng, XU Zheng, et al. An assembled HVDC breaker for HVDC grid[J]. Power System Technology, 2016, 40(1): 70–77 [20] 游洪程, 蔡旭. 应用于直流电网的直接耦合式直流变压器[J]. 中国电机工程学报, 2017, 37(9): 2516–2525 YOU Hongcheng, CAI Xu. Direct-coupled DC transformers applied to DC grids[J]. Proceedings of the CSEE, 2017, 37(9): 2516–2525 [21] 徐政, 肖晃庆, 张哲任. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. [22] 柔性直流输电技术悄然兴起, 百亿级设备市场潜力大[EB/OL]. (2017-12-27) [2023-01-06].https://www.sohu.com/a/213115222_99911594. [23] 国家电网报. 电力百科| 带你了解高压直流断路器[EB/OL]. (2020-07-14) [2023-01-06]. http://www.chinasmartgrid.com.cn/news/20200714/636137.shtml. [24] 北京电力设备总厂有限公司. 公司中标国网公司张北柔性直流电网试验示范工程[EB/OL]. (2018-05-18) [2023-01-06]. http://www.bpeg.ceec. net.cn/art/2018/5/8/art_3977_1641421.html. [25] “准皖直流”已向华东送电 突破1000亿千瓦时[EB/OL]. (2021-09-17) [2023-01-06]. http://www.ahnews.com.cn/anhui/pc/con/2021-09/27/562_432842.html. |