[1] IPCC. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[R]. Geneva: Intergovernmental Panel on Climate Change, 2018. [2] SAPLAKOGLU Y. Carbon dioxide soars to record-breaking levels not seen in at least 800 000 years[EB/OL]. (2019-05-14)[2020-05-31]. https://www.livescience.com/65469-highest-carbon-dioxide-levels.html. [3] UNFCCC. Aggregate effect of the intended nationally determined contributions: an update[R]. Bonn: United Nations Framework Convention on Climate Change, 2016. [4] BOSTON A. Delivering a secure electricity supply on a low carbon pathway[J]. Energy Policy, 2013, 52: 55-59. [5] GREENBLATT J B, BROWN N R, SLAYBAUGH R, et al. The future of low-carbon electricity[R]. Palo Alto: Annual Reviews, 2017. [6] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 1-11 KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 1-11 [7] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29-35, 50 WANG Ningbo, MA Ming, QIANG Tongbo, et al. High-penetration new energy power system development: challenges, opportunities and countermeasures[J]. Electric Power, 2018, 51(1): 29-35, 50 [8] 李琼慧, 王彩霞. 从电力发展“十三五”规划看新能源发展[J]. 中国电力, 2017, 50(1): 30-36 LI Qionghui, WANG Caixia. Analysis on new energy development based on the 13th five-year electricity power planning[J]. Electric Power, 2017, 50(1): 30-36 [9] ENTSO-E. Connecting Europe: electricity[R]. Brussels: ENTSO-E, 2018. [10] ILICETO A, ZICKFELD F. Transforming desertec vision into quantitative scenarios-simulations and optimisation analysis for a decarbonised EUMENA power system[C]// 2014 CIGRE Canada Conference, Toronto, 2014. [11] TAGGART S, JAMES G, DONG Z, et al. The future of renewables linked by a transnational Asian grid[J]. Proceedings of the IEEE, 2012, 100(2): 348-359. [12] CEA. revised draft national electricity plan[R]. New Delhi: Central Electricity Authority, 2017. [13] 刘振亚. 推动落实全球能源互联网中国倡议 助力构建人类命运共同体[N]. 学习时报, 2020-03-27(4). [14] ESCAP. Electricity connectivity roadmap for asia and the pacific[R]. Bangkok: The Economic and Social Commission for Asia and the Pacific, 2019. [15] BHATI H V. One world one sun one grid: a (modi) fication in India's environment[J]. 2019, 10(1): 73–90. [16] ACE, CREEI. ASEAN power cooperation report[R]. Jakarta: ACE, 2017. [17] PARISOT A, MACLEOD N. Roadmap to the supergrid technologies update report[R]. Brussels: FOSG, 2016: 19–37. [18] SAARC. Harmonizing transmission grid codes of SAARC member states to combat regulatory challenges for intra-region power trading / interconnections[R]. Islamabad: the South Asian Association for Regional Cooperation, 2015. [19] ESCAP. Electricity connectivity roadmap for Asia and the pacific[R]. Bangkok: The Economic and Social Commission for Asia and the Pacific, 2019. [20] GEIDCO, ESCAP, ACE. Energy interconnection in ASEAN[R]. Bangkok: ESCAP, 2018. [21] GEIDCO, WMO, IIASA. Research report on global energy interconnection for addressing climate change[M]. Beijing, China: China Electric Power Press, 2019. [22] 丁少倩, 林涛, 徐遐龄, 等. 基于改进的AHP-熵权法的电网综合脆弱性评估方法研究[J]. 电测与仪表, 2017, 54(4): 28-33, 68 DING Shaoqian, LIN Tao, XU Xialing, et al. Research on comprehensive vulnerability of grid assessment method based on the improved AHP-entropy[J]. Electrical Measurement & Instrumentation, 2017, 54(4): 28-33, 68 [23] IRENA. Renewable power generation costs in 2019[R]. Abu Dhabi: International Renewable Energy Agency, 2018. [24] SCHLÖMER S, BRUCKNER T, FULTON L, et al. Climate change 2014: mitigation of climate change. Annex III: technology-specific cost and performance parameters[M]. Cambridge: Cambridge University Press, 2014.
|