中国电力 ›› 2013, Vol. 46 ›› Issue (9): 65-70.DOI: 10.11930/j.issn.1004-9649.2013.9.65.5

• 电网 • 上一篇    下一篇

京津唐电网风电场群发电功率短期预测

田超1, 陈颖2, 张贲1, 张涛1, 王知嘉2   

  1. 1. 国家电网公司 华北分部,北京 100053; 2. 中国电力科学研究院 新能源研究所,江苏 南京 210003
  • 收稿日期:2013-03-24 出版日期:2013-09-23 发布日期:2015-12-10
  • 作者简介:田超(1983—),男,河北唐山人,硕士,工程师,从事电网调度运行和区域电力平衡研究。
  • 基金资助:
    国家高技术研究发展计划(863计划)资助项目(2011AA05A104); 国家电网公司科技项目(SG11021)

Short-Term Forecasting of Wind Farm Groups in Beijing-Tianjin-Tangshan Power Grid

TIAN Chao1, CHEN Ying2, ZHANG Ben1, ZHANG Tao1, WANG Zhi-jia2   

  1. 1. North China Branch of State Grid Corporation of China, Beijing 100053, China; 2. Department of Renewable Energy, China Electric Power Research Institute, Nanjing 210003, China
  • Received:2013-03-24 Online:2013-09-23 Published:2015-12-10

摘要: 随着风电大规模并网,加强区域性风电场群的发电功率预测对于地区电网的安全稳定经济运行具有重要意义。根据京津唐地区风电场群的特殊性,首先用物理建模方式建立风电场的短期风力预测模型,并将统计升尺度技术与物理模型相结合,以提升预测模型精度的稳定性;之后,采用三层体系架构建立京津唐电网风电功率预测系统,且实现了工程应用。运行结果表明,该方法可以更准确地预测京津唐地区风电发电功率,大幅提升京津唐电网风电消纳能力,有效提高电网调度精益化水平。

关键词: 风电, 功率预测, 地区电网, 数值天气预报, 统计升尺度

Abstract: With large-scale integration of wind power, it is important for the safe, stable and economic operation of regional power grid to strengthen the power forecasting of the regional wind farm group. Based on the specific features of wind farm group in Beijing-Tianjin-Tangshan power grid, a short-term wind forecasting model is established by using the physical modeling method, and the statistical up-scaling technology is combined with the physical model to enhance its precision. A wind power prediction system is built with the three-layer architecture for Beijing-Tianjin-Tangshan power grid, and has been applied to the engineering project. It has been proved that this method can effectively predict the wind power of the Beijing-Tianjin-Tangshan region, and can significantly increase the wind power absorptive capacity of Beijing-Tianjin-Tangshan power grid, and improve the lean level of power grid dispatching.

Key words: wind power, power forecast, regional grid, numerical weather prediction, statistical up-scaling

中图分类号: