中国电力 ›› 2023, Vol. 56 ›› Issue (10): 71-79.DOI: 10.11930/j.issn.1004-9649.202303124

• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇    下一篇

基于DRS与改进Autogram的风电齿轮箱复合故障特征提取

马海飞(), 滕伟(), 彭迪康, 柳亦兵, 靳涛   

  1. 华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206
  • 收稿日期:2023-03-29 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:马海飞(1998—),男,硕士研究生,从事风电机组的状态特征提取与故障诊断研究,E-mail: mahaifeii@163.com
    滕伟(1981—),男,通信作者,教授,博士生导师,从事电力装备的状态监测、故障诊断与寿命预测研究,E-mail: tengw@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(半监督环境下风电机组群的智能化故障诊断与寿命预测,51775186)。

Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram

Haifei MA(), Wei TENG(), Dikang PENG, Yibing LIU, Tao JIN   

  1. Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Beijing 102206, China
  • Received:2023-03-29 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Intelligent Fault Diagnosis and Life Prediction of Wind Turbine Group under Semi-Supervised Environment, No.51775186).

摘要:

复合故障特征提取是分析风电齿轮箱故障根因的关键。提出基于离散随机分离(DRS)和改进Autogram的复合故障特征提取方法。基于DRS方法削弱振动信号周期性成分对微弱故障成分的影响,结合谱峭度与谱负熵设计一种新的特征量化指标,对最大重叠离散小波包变换与无偏自相关处理后的各窄带分量进行综合评价,以选择最优的滤波频带,精确地识别包含复合故障特征的信号分量。将所提方法应用于实际风电齿轮箱齿轮-轴承复合故障诊断中,能够有效提取出振动信号中的多个故障特征,具有较好的诊断效果。

关键词: 风电机组, 复合故障, 离散随机分离, 故障诊断, 特征提取

Abstract:

Compound fault feature extraction is the key to analyzing the root cause of wind power gearbox faults. A compound fault feature extraction method based on DRS and improved Autogram is proposed. Based on the DRS method, the influence of the periodic components of vibration signals on the weak fault components is reduced. A new feature quantification index of spectral kurtosis and spectral negative entropy is designed to comprehensively evaluate the narrow-band components after maximum overlapping discrete wavelet packet transform and unbiased autocorrelation processing, so as to select the optimal filtering frequency band and accurately identify the signal components containing compound fault features. The method in this paper is applied to the compound fault diagnosis of wind power gearbox and bearing, which can effectively extract multiple fault features from vibration signals and has a good diagnostic effect.

Key words: wind turbine, compound fault, discrete random separation, fault diagnosis, feature extraction