中国电力 ›› 2025, Vol. 58 ›› Issue (5): 158-165.DOI: 10.11930/j.issn.1004-9649.202406015

• 新型电网 • 上一篇    下一篇

基于有效数据辨识及多维信息融合的高压CVT故障诊断方法

张惠山()   

  1. 国网河北省电力有限公司超高压分公司,河北 石家庄 050071
  • 收稿日期:2024-04-20 发布日期:2025-05-30 出版日期:2025-05-28
  • 作者简介:
    张惠山(1976),男,通信作者,高级工程师(教授级),从事电力系统继电保护与安全稳控系统研究,E-mail:51183942@qq.com
  • 基金资助:
    国网河北省电力有限公司科技项目(提高变电站继电保护系统可靠性创新技术及应用,Kj-2021-055)。

High-Voltage CVT Fault Diagnosis Based on Effective Data Recognition and Multi-dimensional Information Fusion

ZHANG Huishan()   

  1. State Grid Hebei Extra High Voltage Company, Shijiazhuang 050071, China
  • Received:2024-04-20 Online:2025-05-30 Published:2025-05-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Hebei Electric Power Co., Ltd. (Innovative Technologies and Applications for Enhancing the Reliability of Relay Protection Systems in Substations, No.Kj-2021-055).

摘要:

当前高压电容式电压互感器(capacitor voltage transformer,CVT)缺少有效的在线监测数据,辨识不足。利用在线监测多数据源存在线性相关的数据特性,提出了基于分析数据相关系数进行有效数据辨识的方法。针对目前高压CVT故障诊断普遍存在信息单一、精度不高、局部放电在线监测装置故障信号检测受干扰因素影响较大、准确性差等问题,提出了基于多维信息融合的故障诊断方法。首先,利用因子分析对CVT的诊断指标进行数据层信息融合,提取各故障类型对应的公共因子方差贡献值,作为反映故障类型差异的特征值;然后,利用模糊理论进行特征层信息融合,将公共因子方差贡献值作为隶属函数的输入参数,识别CVT的故障类型,准确诊断高压CVT故障。案例验证了所提方法的有效性,为CVT故障诊断提供了理论参考和实践经验。

关键词: 线性相关, 信息融合, 因子分析, 模糊理论, 故障诊断

Abstract:

In view of the poor identification of the effective data in online monitoring of high-voltage capacitor voltage transformer (CVT), this paper proposes a method for effective data identification based on the analysis of data correlation coefficients, with utilization of the data characteristics that multiple online monitoring data sources exhibit linear correlation. To address the prevalent problem in current high-voltage CVT fault diagnosis, such as limited information sources, poor accuracy, and significant interference in partial discharge devices leading to compromised fault signal detection and accuracy, a fault diagnosis method based on multi-dimensional information fusion is proposed. Firstly, factor analysis is employed to perform data-level information fusion on the diagnostic indicators of CVT by extracting the variance contribution values of common factors corresponding to each fault type as eigenvalues that reflect the differences among fault types. Subsequently, fuzzy theory is utilized for feature-level information fusion, and the variance contribution values of common factors are taken as input parameters for the membership function to identify the fault types of CVT, thus achieving the accurate diagnosis of high-voltage CVT faults. The validity of the proposed method is demonstrated through case studies, which can provide a theoretical reference and practical experience for CVT fault diagnosis.

Key words: linear correlation, information fusion, factor analysis, fuzzy theory, fault diagnosis