中国电力 ›› 2024, Vol. 57 ›› Issue (7): 125-131.DOI: 10.11930/j.issn.1004-9649.202306118

• 电网 • 上一篇    下一篇

基于信息融合的配网线路雷害风险评估

裴梓翔(), 舒恺, 周勋甜, 范天成, 罗玉鹤, 刘玉婷   

  1. 宁波市电力设计院有限公司,浙江 宁波 315000
  • 收稿日期:2023-06-30 接受日期:2024-02-05 出版日期:2024-07-28 发布日期:2024-07-23
  • 作者简介:裴梓翔(1990—),男,通信作者,硕士,高级工程师,从事配电线路运维研究,E-mail:759734093@qq.com
  • 基金资助:
    浙江省科技型中小企业技术创新基金(LY21E070023)。

Lightning Risk Assessment of Distribution Network Line Based on Information Fusion

Zixiang PEI(), Kai SHU, Xuntian ZHOU, Tiancheng FAN, Yuhe LUO, Yuting LIU   

  1. Ningbo Electric Power Design Institute Co., Ltd., Ningbo 315000, China
  • Received:2023-06-30 Accepted:2024-02-05 Online:2024-07-28 Published:2024-07-23
  • Supported by:
    This work is supported by SMEs Technological Innovation Fund of Zhejiang Province (No.LY21E070023)

摘要:

雷害严重影响配电线路的安全运行,引入敏感因子和易损性指标,提出一种基于信息融合的雷害风险评估方法。首先,从接地电阻、人口密度、杆塔高度、河网密度和坡向5个方面构建雷害风险指标评价体系;其次,引入信息融合的层次分析法,结合灰色、熵权和证据理论,建立雷害关联矩阵,进行综合评估;最后,对某配电线路进行案例分析。研究结果表明,对于雷害的整体趋势,所提方法评价结果与实际结果基本一致,验证了该指标体系的合理性。

关键词: 配电线路, 雷害风险, 信息融合, 熵权理论, 确信度

Abstract:

Lightning seriously affects the safe operation of distribution network lines. A lightning risk assessment method based on information fusion is thus proposed by introducing sensitive factors and vulnerability indexes. Firstly, a lightning risk assessment index system is constructed from five aspects including ground resistance, population density, tower height, river network density and slope direction. Secondly, by introducing the analytic hierarchy process of information fusion, a correlation matrix of lightning damage is established based on grey, entropy weight and evidence theory to carry out comprehensive evaluation. Finally, a case study of a distribution network line was conducted. The results show that the evaluation results of the proposed method are basically consistent with the actual results for overall trend of lightning risk, which validates the rationality of the index system.

Key words: distribution network line, lightning risk, information fusion, entropy weight theory, degree of certainty