[1] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1–14 DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1–14 [2] 邵振国,许昊铂,肖颂勇. 新能源电网中的谐波问题[J]. 电力系统保护与控制, 2021, 49(4): 178–187 SHAO Zhenguo, XU Haobo, XIAO Songyong, et al. Harmonic problems in a new energy power grid[J]. Power System Protection and Control, 2021, 49(4): 178–187 [3] 邹鹏辉,张治,张显立. 高渗透率分布式光伏系统谐波与电压控制[J]. 智慧电力, 2020, 48(12): 40–45 ZOU Penghui, ZHANG Zhi, ZHANG Xianli. Harmonic and voltage control of distributed photovoltaic system with high permeability[J]. Smart Power, 2020, 48(12): 40–45 [4] 李辉, 王梦思, 李帅虎, 等. 基于态势利导的同步逆变器负序电流抑制方法[J]. 电力系统自动化, 2018, 42(9): 141–148,179 LI Hui, WANG Mengsi, LI Shuaihu, et al. Situation orientation based suppression method of negative sequence current for synchronverter[J]. Automation of Electric Power Systems, 2018, 42(9): 141–148,179 [5] AMINI M H, KARGARIAN A, KARABASOGLU O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation[J]. Electric Power Systems Research, 2016, 140: 378–390. [6] JIANG H G, ZHANG Y C, MULJADI E, et al. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3341–3350. [7] 丁泽俊, 刘平, 欧阳森, 等. 电能质量预测与预警机制及其应用[J]. 电力系统及其自动化学报, 2015, 27(10): 87–92 DING Zejun, LIU Ping, OUYANG Sen, et al. Mechanism of power quality forecast and early warning and their application[J]. Proceedings of the CSU-EPSA, 2015, 27(10): 87–92 [8] 林顺富, 汤继开, 汤波, 等. 典型电能质量稳态指标预测模型研究[J]. 电网技术, 2018, 42(2): 614–620 LIN Shunfu, TANG Jikai, TANG Bo, et al. Study on forecasting model of typical power quality steady state indices[J]. Power System Technology, 2018, 42(2): 614–620 [9] VANTUCH T, MI?áK S, JE?OWICZ T, et al. The power quality forecasting model for off-grid system supported by multiobjective optimization[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9507–9516. [10] 卢珏, 孙云莲, 谢信霖, 等. 基于改进组合预测的电能质量预警研究[J]. 电工电能新技术, 2020, 39(9): 65–73 LU Jue, SUN Yunlian, XIE Xinlin, et al. Research on power quality early warning based on improved combined forecasting[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(9): 65–73 [11] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47–56,110 JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM&GRU of adaptive weight[J]. Electric Power, 2022, 55(5): 47–56,110 [12] MANSOURI V, AKBARI M E. Efficient short- term electricity load forecasting using recurrent neural networks[J]. Journal of Artificial Intelligence in Electrical Engineering, 2014, 3(9): 46–54. [13] SHI H, XU M H, LI R. Deep learning for household load forecasting—A novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5271–5280.[LinkOut]. [14] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841–851. [15] 李鹏, 何帅, 韩鹏飞, 等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术, 2018, 42(12): 4045–4052 LI Peng, HE Shuai, HAN Pengfei, et al. Short-term load forecasting of smart grid based on long-short-term memory recurrent neural networks in condition of real-time electricity price[J]. Power System Technology, 2018, 42(12): 4045–4052 [16] 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39(14): 4032–4042 SHI Jiaqi, ZHANG Jianhua. Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39(14): 4032–4042 [17] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报, 2021, 42(6): 304–311 LI Ran, MA Tao, ZHANG Xiao, et al. Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 304–311 [18] 翁国庆, 龚阳光, 舒俊鹏, 等. 基于聚类LSTM深度学习模型的主动配电网电能质量预测[J]. 高技术通讯, 2020, 30(7): 687–697 WENG Guoqing, GONG Yangguang, SHU Junpeng, et al. Power quality prediction of active distribution network based on clustering LSTM deep learning model[J]. Chinese High Technology Letters, 2020, 30(7): 687–697 [19] 杨朝赟, 夏圣峰, 江南, 等. 基于相关性分析和长短时记忆网络的稳态电压质量指标预测[J]. 电力建设, 2021, 42(4): 9–16 YANG Chaoyun, XIA Shengfeng, JIANG Nan, et al. Prediction of steady-state indices of voltage quality based on correlation analysis and long short-term memory network[J]. Electric Power Construction, 2021, 42(4): 9–16 [20] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23 [21] 庄家懿, 杨国华, 郑豪丰, 等. 基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法[J]. 中国电力, 2021, 54(5): 46–55 ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Short-term load forecasting method based on multi-model fusion using CNN-LSTM-XGBoost framework[J]. Electric Power, 2021, 54(5): 46–55 [22] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44(9): 3416–3424 YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416–3424 [23] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53–58 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53–58 [24] ZHOU B W, MA X J, LUO Y H, et al. Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J]. IEEE Access, 2019, 7: 165279–165292. [25] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518–1524. [26] TAN M, YUAN S P, LI S H, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937–2948.
|