中国电力 ›› 2019, Vol. 52 ›› Issue (7): 17-23.DOI: 10.11930/j.issn.1004-9649.201812028

• 泛在电力物联网——先进信息与通信技术 • 上一篇    下一篇

基于YOLO的无人机电力线路杆塔巡检图像实时检测

郭敬东1, 陈彬1, 王仁书1, 王佳宇2, 仲林林2   

  1. 1. 国网福建省电力有限公司电力科学研究院, 福建 福州 350007;
    2. 东南大学 电气工程学院, 江苏 南京 210096
  • 收稿日期:2018-12-12 修回日期:2019-03-19 出版日期:2019-07-05 发布日期:2019-07-13
  • 作者简介:郭敬东(1968-),男,高级工程师,从事信息通信、信息系统开发、信息自动化、智能信息处理研究,E-mail:guo_jingdong@fj.sgcc.com.cn;仲林林(1990-),男,通信作者,博士,讲师,从事高电压与放电等离子体基础理论与应用、大数据与人工智能技术研究,E-mail:linlin@seu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(518070280);国家电网有限公司科技项目(52130418000L)。

YOLO-Based Real-Time Detection of Power Line Poles from Unmanned Aerial Vehicle Inspection Vision

GUO Jingdong1, CHEN Bin1, WANG Renshu1, WANG Jiayu2, ZHONG Linlin2   

  1. 1. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China;
    2. Department of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2018-12-12 Revised:2019-03-19 Online:2019-07-05 Published:2019-07-13
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51807028), and Science and Technology Project of SGCC (No.52130418000L).

摘要: 无人机巡检已成为电力线路灾后巡检的重要方式。然而,目前的无人机巡检仍主要通过人工方式评估线路灾损,不仅费时费力,而且准确率低。提出了一种基于深度学习算法(YOLO)的实时目标检测模型,用于灾后根据无人机巡检视频实时检测电力杆塔的状态。通过对倒断类杆塔图像进行数据增广,解决了杆塔类别不平衡问题。通过使用K-means算法对杆塔数据集的目标框进行重新聚类,改进了YOLO算法参数。测试结果表明,该模型能有效检测多种环境下多种尺度的杆塔目标。改进后的模型在测试集上的召回率和交并比(IoU)较改进前有所提高,且平均均值精度(mAP)达到94.09%,检测速度达到20帧/s。此外,也对更快的简化版YOLO模型进行了测试,检测速度能达到30帧/s。

关键词: 无人机巡检, 电力杆塔, 深度学习, YOLO, 数据增广, 人工智能与大数据应用

Abstract: Unmanned aerial vehicles (UAV)-based inspection has become an important approach for power line inspection after disaster. However, the current UAV-based inspection is still performed manually for damage assessments, which is not only time-consuming but also poor in accuracy. In this paper a real-time detection model based on YOLO deep learning algorithm is presented to detect the status of power line poles automatically from the UAV vision data after disaster. The data augmentation is performed for collapsed towers to solve the class imbalance problem. To improve the parameters of YOLO, K-means algorithm is used to cluster object frames of pole data. The experimental results show that the proposed model can effectively detect multi-scale towers in multiple environments. The Recall and Intersection-over-Union (IoU) of the improved YOLO are improved, with the mean average precision (mAP) on the test set of 94.09% and the average processing speed of 20 frames per second (FPS) after improving the parameters. Moreover, we tested the simplified YOLO with faster speed, and the average processing speed reaches 30 FPS.

Key words: UAV inspection, power line poles, deep learning, YOLO, data augmentation, artificial intelligence and big data application

中图分类号: