[1] 韩冰, 尚方. 面向无人机输电线路巡检的电力杆塔检测框架模型[J]. 浙江电力, 2016, 35(4):6-11 HAN Bing, SHANG Fang. Power tower detection framework model for UAV transmission line inspection[J]. Zhejiang Electric Power, 2016, 35(4):6-11 [2] KATRASNIK, PERNUS, LIKAR. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2009, 25(1):485-493. [3] ROVERSO D, NGUYEN V N, JENSSEN R. Automatic autonomous vision-based power line inspection:a review of current status and the potential role of deep learning[J]. International Journal of Electrical Power & Energy Systems, 2018, 99(7):107-120. [4] TOTH J, GILPIN-JACKSON A. Smart view for a smart grid:unmanned aerial vehicles for transmission lines[C]//International Conference on Applied Robotics for the Power Industry Montreal. Montreal, Canada:IEEE, 2010:1-6. [5] DENG C, WANG S, HUANG Z, et al. Unmanned aerial vehicles for power line inspection:a cooperative way in platforms and communications[J]. Journal of Communications, 2014, 9(9):687-692. [6] 章绍耕. 浅谈"抗台风"电网抢修物资供应过程中所应注意的问题[J]. 农电管理, 2017(3):28-29 ZHANG Shaogeng. A brief discussion on the problems in the material supply and emergency repair process of power grid in anti-typhoon[J]. Rural Power Management, 2017(3):28-29 [7] 王万国, 田兵, 刘越, 等. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2):256-263 WANG Wanguo, TIAN Bing, LIU Yue, et al. Research on power component recognition of unmanned aerial vehicle inspection image based on RCNN[J]. Geo-Information Science, 2017, 19(2):256-263 [8] 杨晓旭, 温招洋. 深度学习在输电线路绝缘子故障检测中的研究与应用[J]. 中国新通信, 2018, 20(10):208-210 YANG Xiaoxu, WEN Zhaoyang. Research and application of deep learning in fault detection of transmission line insulators[J]. China New Telecommunications, 2018, 20(10):208-210 [9] NORDENG I E, HASAN A, OLSEN D, et al. DEBC detection with deep learning[C]//Scandinavian Conference on Image Analysis. Troms, Norway:Springer, 2017:248−259. [10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision. Amsterdam, Netherlands:Springer, 2016:21-37. [12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:779-788. [13] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA:IEEE, 2017:6517−6525. [14] REDMON J, FARHADI A. YOLOv3:an incremental improvement[DB/OL]. (2018-04-08)[2018-10-18]. http//arXiv.org/pdf/1804.02767.pdf. [15] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Conference on Computer Vision and Pattern Recognition. Hawaii, USA:IEEE, 2017:2980-2988. [16] MARTINEZ C, SAMPEDRO, CHAUHAN A, et al. Towards autonomous detection and tracking of electric towers for aerial power line inspection[C]//International Conference on Unmanned Aircraft Aystems. Orlando, USA:IEEE, 2014:284−295. [17] 苑津莎, 崔克彬, 李宝树. 基于ASIFT算法的绝缘子视频图像的识别与定位[J]. 电测与仪表, 2015, 52(7):106-112 YUAN Jinsha, CUI Kebin, LI Baoshu. Recognition and location of insulator video and image by ASIFT-based algorithm[J]. Electrical Measurement Instrumentation, 2015, 52(7):106-112 [18] GERKE M, SEIBOLD P. Visual inspection of power lines by UAS[C]//International Conference and Exposition on Electrical and Power Engineering. Iasi, Romania:IEEE, 2014:284−295. [19] KRAWCZYK B. Learning from imbalanced data:open challenges and future directions[J]. Progress in Artificial Intelligence, 2016, 5(4):1-12. [20] OUYANG W, WANG X, ZHANG C, et al. Factors in fine tuning deep model for object detection with long-tail distribution[C]//Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:864−873. [21] ENGSTROM L, TSIPRAS D, SCHMIDT L, et al. A rotation and a translation suffice:fooling CNNs with simple transformations[DB/OL]. (2017-12-07)[2018-01-20]. http//arXiv.org/pdf/1712.02779.pdf. |