中国电力 ›› 2021, Vol. 54 ›› Issue (11): 214-220.DOI: 10.11930/j.issn.1004-9649.202003201

• 信息与通信 • 上一篇    下一篇

基于混合算法的电力杆塔巡检实时航迹规划

黄郑1, 王红星1, 周航2, 张星炜1, 赵宏伟2   

  1. 1. 江苏方天电力技术有限公司,江苏 南京 211102;
    2. 南京航空航天大学 民航学院,江苏 南京 211106
  • 收稿日期:2020-03-27 修回日期:2020-12-08 出版日期:2021-11-05 发布日期:2021-11-16
  • 作者简介:黄郑(1990-),男,通信作者,工程师,从事输电线路无人机智慧巡检研究,E-mail:hz10@vip.qq.com;王红星(1974-),男,高级工程师(教授级),从事无人机智慧巡检相关技术研究,E-mail:whx@js.sgcc.com.cn
  • 基金资助:
    江苏方天电力技术有限公司科技项目(无人机智能巡检关键技术与三维平台应用,KJ201915)

Real-Time Path Planning for Power Tower Inspection Based on Hybrid Algorithm

HUANG Zheng1, WANG Hongxing1, ZHOU Hang2, ZHANG Xingwei1, ZHAO Hongwei2   

  1. 1. Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, China;
    2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2020-03-27 Revised:2020-12-08 Online:2021-11-05 Published:2021-11-16
  • Supported by:
    This work is supported by Science and Technology Project of Jiangsu Frontier Electric Technology Co., Ltd. (No.KJ201915)

摘要: 传统的电力杆塔拍摄视点顺序固定,多旋翼无人机巡检距离并非最优;同时,随着维度增加,航迹规划算法空间复杂度呈指数增长,不能满足实时规划航迹的需求。针对以上问题,提出一种基于蚁群和A*混合算法(ACO-A*)的电力杆塔巡检三维航迹规划方法。该方法分为全局规划和局部规划,全局规划利用改进蚁群算法找到覆盖所有视点的较优路径,并通过算法判断路径是否经过障碍物,再运用A*算法局部规划。仿真结果表明:ACO-A*算法规划的航迹长度比《架空输电线路无人机巡检影像拍摄指导手册》规定的巡检航迹降低了16.85%;ACO-A*算法路径规划时间比A*算法降低了99.68%。因此本方法既节约了巡检能耗,又提高了航迹规划的效率。

关键词: 三维航迹规划, 蚁群算法, A*算法, 混合算法, 电力杆塔巡检

Abstract: The sequence of conventional shooting viewpoints for power tower is fixed and the inspection distance of multi-rotor UAV is not optimal. In addition, as the dimension increases, the path planning algorithm cannot meet the requirements of real-time path planning because the space complexity increases exponentially. Aiming at those problems, a three-dimensional path planning method for power tower inspection is proposed based on ant colony optimization and A * (ACO-A*) hybrid algorithm. The method is composed of global planning and local planning. Firstly, the global planning uses the ant colony optimization algorithm to find a relatively optimal path that covers all viewpoints, and to judge whether the path passes through obstacles. And then the A* algorithm is used for local planning. The simulation results show that the path length planned by the proposed ACO-A* algorithm is reduced by 16.68% compared to that stipulated in the Shooting Manual for UAV Inspection Images of Overhead Transmission Lines, and the path planning time is reduced by 99.68% compared to that of the A* algorithm. Therefore, the proposed method not only reduces the energy consumption for inspection, but also enhances the efficiency of path planning.

Key words: three-dimensional path planning, ant colony algorithm, A* algorithm, hybrid algorithm, power tower inspection