[1] 国家能源局. 2016年光伏发电统计信息[EB/OL]. [2017-02-04]http://www.nea.gov.cn/2017-02/04/c_136030860.htm. [2] 陈炜,艾欣,吴涛,等. 光伏并网发电系统对电网的影响研究综 述[J]. 电力自动化设备,2013,33(2):26-32. 3 CHEN Wei, AI Xin, WU Tao, et al . Influence of grid-connected photovoltaic system on power network[J]. Electric Power Automation Equipment, 2013, 33(2): 26-32. [3] 张雪莉,刘其辉,马会萌,等. 光伏电站输出功率影响因素分析[J]. 电网与清洁能源,2012,28(5):76-81. ZHANG Xueli, LIU Qihui, MA Huimeng, et al Analysis of influencingfactors of output power of photovoltaic power plant[J]. Power System and Clean Energy, 2012, 28(5): 76~81. [4] 杨超颖,王金浩,王硕,等. 基于拟牛顿法小波神经网络的光伏发电系统短期功率预测模型[J]. 中国电力,2014,47(6):117-124. YANG Chaoying, WANG Jinhao, WANG Shuo, et al . A forecasting method of short-term power output of photovoltaic system based on wavelet neural network trained by quasi-newton nethod [J]. Electric Power, 2014, 47(6): 117-124. [5] YONA A, SENJYU T, SABER A Y, et al . Application of neural network to 24-hour-ahead generating power forecasting for PV system[C]// IEEE Power and Energy Society General Meeting- Conversion and Delivery of Electrical Energy in the 21st Century. 2008. [6] 栗然,李广敏. 基于支持向量机回归的光伏发电出力预测[J]. 中国电力,2008,41(2):74-78. LI Ran, LI Guangmin. Photovoltaic power generation output forecasting based on support vector machine regression technique[J]. Electric Power, 2008, 41(2): 74-78. [7] 罗毅,邢校萄. 基于小波变换和支持向量机的短期光伏发电功率预测[J]. 新能源进展,2014,2(5):380-384. LUO Yi, XING Xiaotao. Short-termforecasting of photovoltaic power generation based on wavelet decomposition and support vector machine[J]. Advances in New and Renewable Energy, 2014, 2(5): 380-384. [8] 朱永强,田军. 最小二乘支持向量机在光伏功率预测中的应用[J]. 电网技术,2011,35(7):54-59. ZHU Yongqiang, TIAN Jun. Application ofleast square support vector machine in photovoltaic power forecasting [J]. Power System Technology, 2011, 35(7): 54-59. [9] 傅美平,马红伟,毛建容. 基于相似日和最小二乘支持向量机的光伏发电量短期预测[J]. 电力系统保护与控制,2012,40(16):65-69. FU Meiping, MA Hongwei, MAO Jianrong. Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power System Protection and Control, 2012, 40(16): 65-69. [10] 茆美琴,龚文剑,张榴晨,等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报,2013,33(34):17-24. MAO Meiqin, GONG Wenjian, ZHANG Liuchen, et al . Short- term photovoltaic generation forecasting based on EEMD-SVM combined method [J]. Proceedings of the CSEE, 2013, 33(34): 17-24. [11] 杜翠. 针对气象数据弱相关的光伏输出功率预测方法研究[D].北京:华北电力大学,2016. [12] 刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用[M]. 2版. 北京:科学出版社,1999:1-18. [13] HYANG N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A. 1998, 454(1971): 903-995. [14] HUANG N E, SHEN Z, LONG S R, et al . A new view of nonlinear water waves: the Hillbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457. [15] HASIMAH A, MUTHUSAMY H, SAZALI Y, et al . Facial emotion recognition using empirical mode decomposition[J]. Expert System with Application,2015, 42(3): 1261-1277. [16] GUNTURKUN U. Bivariate empirical mode decomposition for cognitive radar scene analysis[J]. IEEE Signal Processing Letters,2015, 22(5): 603-607. [17] TERRADAS J, OLIVER R, BALLESTER J L. Application of statistical techniques to the analysis of solar coronal oscillation[J]. The Astrophysical Journal, 2004(614): 435-447. [18] VAPNIK V N. The nature of statistical learning theory[M]. Berlin: springer-verlag, 1995. |