中国电力 ›› 2017, Vol. 50 ›› Issue (12): 159-164.DOI: 10.11930/j.issn.1004-9649.201707137

• 新能源 • 上一篇    下一篇

基于灰色关联理论与经验模态分解的光伏出力超短期预测

索春梅1, 孙健2, 张宗峰3, 王贤宗4   

  1. 1. 哈尔滨电力职业技术学院,黑龙江 哈尔滨 150030;
    2. 国网北京市电力公司电力科学研究院,北京 100075;
    3. 国网山东省电力公司日照供电公司,山东 日照 276826;
    4. 国网山东省电力公司临沂供电公司,山东 临沂 276000
  • 收稿日期:2017-07-20 出版日期:2017-12-20 发布日期:2018-01-30
  • 作者简介:索春梅(1978—),女,黑龙江哈尔滨人,副教授,从事新能源发电技术研究。E-mail:349103182@qq.com
  • 基金资助:
    国家电网公司科技项目(520201150012)

The Ultra-Short-Term Forecast of Photovoltaic Power Output Based on Grey Relational Analysis and Empirical Mode Decomposition

SUO Chunmei1, SUN Jian2, ZHANG Zongfeng3, WANG Xianzong4   

  1. 1. Harbin Electric Power Vocational Technology College, Harbin 150030, China;
    2. Beijing Electric Power Research Institute, Beijing 100075, China;
    3. State Grid Shandong Rizhao Power Supply Company, Rizhao 276826, China;
    4. State Grid Shandong Linyi Power Supply Company, Linyi 276000, China
  • Received:2017-07-20 Online:2017-12-20 Published:2018-01-30
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No. 520201150012).

摘要: 光伏出力受太阳辐照度、温度、瞬时云团等影响,出力序列呈现明显的非平稳特性,给预测工作带来难度。为降低出力波动性对预测效果的影响,满足光伏出力超短期预测对预测精度的需要,提出两阶段构建输入样本的方法,首先使用灰色关联度理论构建待预测日的相似日样本集合,再使用经验模态分解法拆解相似日历史出力,得到振动模态相对平稳的本征模函数及剩余分量后,使用支持向量机模型对每个分量进行滚动预测,最后将预测结果重构得到下一时刻的点预测值。实例证明,该组合模型的均方根误差可达到1.93,实现了较高精度,可以为光伏出力调度工作提供更多决策依据。

关键词: 灰色关联理论, 经验模态分解, 光伏, 超短期预测

Abstract: PV power output is affected by solar irradiance, temperature and instantaneous cloud, and its generation presents obvious non-stationary features, which increases the difficulty of prediction. To reduce the influence of output volatility on the prediction effectiveness and satisfy the accuracy requirement of ultra-short-term prediction, this paper proposes a two-stage method to build input samples. Firstly, the grey correlation principle is applied to build similar sample collection. Then, the empirical mode decomposition method is used to decompose the output sequence of similar days. After getting the relatively stable function and the remaining component, the support vector machine, a data mining tool, is used to do rolling prediction for every component. Finally, all the prediction results are added to get the prediction of next moment. A case study proves that the root-mean-square error of the combined model shows a high precision of 1.93, which can provide more decision-making support for PV power scheduling.

Key words: grey correlation principle, empirical mode decomposition method, photovoltaic, ultra-short-term prediction

中图分类号: