中国电力 ›› 2025, Vol. 58 ›› Issue (9): 1-9.DOI: 10.11930/j.issn.1004-9649.202502026
• 提升新能源和新型并网主体涉网安全能力关键技术 • 上一篇 下一篇
收稿日期:2025-02-13
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:Received:2025-02-13
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
针对集中式有功功率分配方法应用于大规模风电场时存在的计算和通信负担显著、鲁棒性差、故障风险高等问题,研究了一种基于分布式拥塞控制的风电场有功功率调度方法。首先,考虑到桨距角调整引起的机械疲劳以及转子降速过快引起的控制模式切换,引入了量化桨距角和转子转速对风电机组功率增量的灵敏度成本函数;其次,利用拥塞指数来优化功率分配和跟踪性能;最后,通过分布式一致性算法简化了风电机组功率参考的计算,显著降低了控制中心的计算和通信负担,使得所提方法具有可扩展性。与集中式控制方法进行对比分析表明,所提方法在功率跟踪性能、功率分配和鲁棒性方面更优。
许晋宇, 徐慧. 基于改进分布式拥塞控制的风电场有功功率调度方法[J]. 中国电力, 2025, 58(9): 1-9.
XU Jinyu, XU Hui. Wind Farm Active Power Scheduling Method Based on Improved Distributed Congestion Control[J]. Electric Power, 2025, 58(9): 1-9.
| 参数 | 数值 | 参数 | 数值 | |||
| 风轮半径R/m | 63 | 积分系数初值 | 20 | |||
| 额定功率PN/MW | 5 | 最佳叶尖速比 | 7.6 | |||
| 额定风速 | 12 | 最大风能利用系数 | ||||
| 最大桨距角 | 85 | 风轮外阻尼 | 0 | |||
| 最小桨距角 | 0 | 低速轴扭转阻尼 | ||||
| 风轮额定转速 | 1.27 | 发电机外阻尼 | 0 | |||
| 风轮最小转速 | 发电机转动惯量 | |||||
| 滤波器时间常数 | 0.1 | 风轮转动惯量 | ||||
| 比例系数初值 | 300 | 低速轴扭转的刚度 |
表 1 风电机组参数
Table 1 Wind turbine parameters
| 参数 | 数值 | 参数 | 数值 | |||
| 风轮半径R/m | 63 | 积分系数初值 | 20 | |||
| 额定功率PN/MW | 5 | 最佳叶尖速比 | 7.6 | |||
| 额定风速 | 12 | 最大风能利用系数 | ||||
| 最大桨距角 | 85 | 风轮外阻尼 | 0 | |||
| 最小桨距角 | 0 | 低速轴扭转阻尼 | ||||
| 风轮额定转速 | 1.27 | 发电机外阻尼 | 0 | |||
| 风轮最小转速 | 发电机转动惯量 | |||||
| 滤波器时间常数 | 0.1 | 风轮转动惯量 | ||||
| 比例系数初值 | 300 | 低速轴扭转的刚度 |
| 1 |
田刚领, 武鸿鑫, 李娟, 等. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57 (9): 247- 256.
DOI |
|
TIAN Gangling, WU Hongxin, LI Juan, et al. Power distribution strategy of multi-functional energy storage powerstation in wind farm[J]. Electric Power, 2024, 57 (9): 247- 256.
DOI |
|
| 2 |
梁伟, 吴林林, 赖启平, 等. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56 (4): 28- 37.
DOI |
|
LIANG Wei, WU Linlin, LAI Qiping, et al. Study on overvoltage of wind farm under AC fault at sending end of HVDC transmission system[J]. Electric Power, 2023, 56 (4): 28- 37.
DOI |
|
| 3 | 段瑶. 考虑大规模风电对电网频率影响的快速随机潮流算法[J]. 电力科学与技术学报, 2017, 32 (4): 44- 49. |
| DUAN Yao. Fast probabilistic power flow algorithm considering the impact on power frequencyof large scale wind power injection[J]. Journal of Electric Power Science and Technology, 2017, 32 (4): 44- 49. | |
| 4 | 郑华, 伏睿, 张颖, 等. 构网型储能系统与风力发电的协同控制研究[J]. 电力信息与通信技术, 2023, 21 (11): 48- 54. |
| ZHENG Hua, FU Rui, ZHANG Ying, et al. Research on collaborative control of the grid-forming electrical storage system with the wind power plant[J]. Electric Power Information and Communication Technology, 2023, 21 (11): 48- 54. | |
| 5 | 李东东, 董楠, 姚寅, 等. 考虑频率响应分散性及系统分区的含风电系统等效惯量估计[J]. 电力系统保护与控制, 2023, 51 (3): 36- 45. |
| LI Dongdong, DONG Nan, YAO Yin, et al. Equivalent inertia estimation of a power system containing wind power considering dispersion offrequency response and system partitioning[J]. Power System Protection and Control, 2023, 51 (3): 36- 45. | |
| 6 | MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21 (1): 433- 434. |
| 7 | 江灿. 大规模风电场群参与系统一次调频策略研究[D]. 包头: 内蒙古科技大学, 2023. |
| JIANG Can. Large-scale wind farm groups participate in the study of primary frequency modulation strategies[D]. Baotou: Inner Mongolia University of Science & Technology, 2023. | |
| 8 | 唐坚, 唐庆宏, 姚禹歌, 等. 风电调频能力的潜力分析[J]. 动力工程学报, 2022, 42 (11): 1138- 1145. |
| TANG Jian, TANG Qinghong, YAO Yuge, et al. Potential analysis of frequency regulation ability of wind power in the view of energy[J]. Journal of Chinese Society of Power Engineering, 2022, 42 (11): 1138- 1145. | |
| 9 | HENDRAWATI D, DIONOVA B W, Sahid, et al. Design of wind turbines power coefficient on wind farm based centralized control[C]//2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). Surabaya, Indonesia. IEEE, 2021: 315–318. |
| 10 | BONALA A K, SANDEPUDI S R. Centralised model-predictive decoupled active–reactive power control for three-level neutral point clamped photovoltaic inverter with preference selective index-based objective prioritisation[J]. IET Power Electronics, 2019, 12 (4): 840- 851. |
| 11 | 杨伟峰, 文云峰, 李立, 等. 考虑疲劳载荷的风电场分散式频率响应策略[J]. 电力自动化设备, 2022, 42 (4): 55- 62. |
| YANG Weifeng, WEN Yunfeng, LI Li, et al. Decentralized frequency response strategy for wind farm considering fatigue load[J]. Electric Power Automation Equipment, 2022, 42 (4): 55- 62. | |
| 12 | 姚琦, 胡阳, 柳玉, 等. 考虑载荷抑制的风电场分布式自动发电控制[J]. 电工技术学报, 2022, 37 (3): 697- 706. |
| YAO Qi, HU Yang, LIU Yu, et al. Distributed automatic generation control of wind farm considering load suppression[J]. Transactions of China Electrotechnical Society, 2022, 37 (3): 697- 706. | |
| 13 |
杨伟峰, 文云峰, 张武其, 等. 基于风-储联合的双层频率响应控制策略[J]. 电力系统自动化, 2022, 46 (12): 184- 193.
DOI |
|
YANG Weifeng, WEN Yunfeng, ZHANG Wuqi, et al. Bi-level frequency response control strategy based on wind power and energy storage[J]. Automation of Electric Power Systems, 2022, 46 (12): 184- 193.
DOI |
|
| 14 | 侯婷. 考虑疲劳优化的风电场分布式有功功率分配策略研究[D]. 北京: 华北电力大学, 2021. |
| HOU Ting. Research on wind farm distributed active power allocation strategy considering fatigue optimization. Beijing: North China Electric Power University, 2021. | |
| 15 | 姚琦. 风电场有功调度与频率支撑优化控制研究[D]. 北京: 华北电力大学, 2020. |
| YAO Qi. Research on active power dispatching and frequency optimization control of wind farm[D]. Beijing: North China Electric Power University, 2020. | |
| 16 | 王瑞田. 基于MPC的风电场有功分配策略研究[D]. 北京: 华北电力大学, 2021. |
| WANG Ruitian. Research on active power distribution strategy of wind farm based on MPC[D]. Beijing: North China Electric Power University, 2021. | |
| 17 |
KONG X B, MA L L, WANG C, et al. Large-scale wind farm control using distributed economic model predictive scheme[J]. Renewable Energy, 2022, 181, 581- 591.
DOI |
| 18 | 刘肖杰. 基于分布式模型预测控制的孤岛微电网电压协调优化控制策略研究[D]. 广州: 华南理工大学, 2022. |
| LIU Xiaojie. Coordinated Optimization Control Strategy of Voltagefor Islanded Microgrid Based on Distributed ModelPredictive Control[D]. Guangzhou: South China University of Technology, 2022. | |
| 19 | 薛帅. 大规模海上风电场有功功率的分层分布式控制[D]. 济南: 山东大学, 2021. |
| XUE Shuai. Hierarchical distributed active power control for large-scale wind farm[D]. Jinan: Shandong University, 2021. | |
| 20 | 黄鑫, 王婕, 邢侃. 双馈风力发电系统的MPPT自适应滑模控制[J]. 水电能源科学, 2021, 39 (12): 214- 218. |
| HUANG Xin, WANG Jie, XING Kan. Adaptive sliding mode control for maximum power point tracking of doubly-fed wind turbine[J]. Water Resources and Power, 2021, 39 (12): 214- 218. | |
| 21 |
陈载宇, 沈春, 殷明慧, 等. 面向AGC的变速变桨风电机组有功功率控制策略[J]. 电力工程技术, 2017, 36 (1): 9- 14.
DOI |
|
CHEN Zaiyu, SHEN Chun, YIN Minghui, et al. Review of active power control strategy for variable-speed variable-pitch wind turbine participating in AGC[J]. Electric Power Engineering Technology, 2017, 36 (1): 9- 14.
DOI |
|
| 22 | 张继勇, 嵇仁君, 马一鸣, 等. 风力发电变桨距模糊自适应PID控制[J]. 科技创新与应用, 2022, 12 (33): 16- 19. |
| ZHANG Jiyong, JI Renjun, MA Yiming, et al. Fuzzy adaptive PID control of variable pitch for wind power generation[J]. Technology Innovation and Application, 2022, 12 (33): 16- 19. | |
| 23 | 曹俊伟, 张硕望, 黄凌翔, 等. 基于自适应桨距角控制策略的风电机组发电性能优化方法[J]. 太阳能, 2024, (5): 52- 61. |
| CAO Junwei, ZHANG Shuowang, HUANG Lingxiang, et al. Optimization method for wind turbine power generation performance based on self-adaption pitch angle control strategy[J]. Solar Energy, 2024, (5): 52- 61. | |
| 24 | 陈载宇. 低风速风力机最大功率点跟踪控制的性能分析与改进方法[D]. 南京: 南京理工大学, 2019. |
| CHEN Zaiyu. Performance analysis and improvements for maximum power point tracking control of low wind speed wind turbines[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
| 25 |
李斌, 张镇麒, 于浩辉, 等. 风力发电机组泵控液压系统变桨距控制研究[J]. 液压与气动, 2023, 47 (4): 27- 35.
DOI |
|
LI Bin, ZHANG Zhenqi, YU Haohui, et al. Study on variable pitch control of pump controlled hydraulic system of wind turbine[J]. Chinese Hydraulics & Pneumatics, 2023, 47 (4): 27- 35.
DOI |
|
| 26 | 卢奭瑄, 史航. 风力发电机组的桨距角控制技术分析[J]. 集成电路应用, 2023, 40 (9): 70- 72. |
| LU Shixuan, SHI Hang. Analysis of pitch angle control technology for wind turbine generators[J]. Application of IC, 2023, 40 (9): 70- 72. | |
| 27 |
王东风, 张鹏, 黄宇, 等. 针对风机变桨距控制系统隐蔽攻击的防御方法研究[J]. 电力科学与工程, 2024, 40 (5): 47- 54.
DOI |
|
WANG Dongfeng, ZHANG Peng, HUANG Yu, et al. Research on the defense method of covert attack for variable pitch control system of wind turbine[J]. Electric Power Science and Engineering, 2024, 40 (5): 47- 54.
DOI |
| [1] | 王冠朝, 霍雨翀, 李群, 李强. 基于深度强化学习与改进Jensen模型的风电场功率优化[J]. 中国电力, 2025, 58(4): 78-89. |
| [2] | 朱乾龙, 金小强, 王绪利, 苏凡亚, 邓天白, 陶骏. 基于Bayes判别准则的风电场等值误差阈值最小风险量化方法[J]. 中国电力, 2025, 58(4): 98-106. |
| [3] | 宋许鹏, 杨小洋, 樊征臻. 基于电流合成矢量轨迹特性的双馈风电场主变压器差动保护[J]. 中国电力, 2025, 58(2): 9-21. |
| [4] | 王泽嘉, 韩民晓, 范溢文. 基于SVG附加电流反馈阻抗重塑的双馈风电场次/超同步振荡抑制策略[J]. 中国电力, 2024, 57(8): 55-66. |
| [5] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
| [6] | 李丹, 梁云嫣, 缪书唯, 方泽仁, 胡越, 贺帅. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57(12): 17-29. |
| [7] | 董淑文, 刘宝柱, 胡俊杰. 计及线路优化投切限流的含风电电网扩展规划方法[J]. 中国电力, 2023, 56(8): 117-125,142. |
| [8] | 徐艳春, 范钟耀, 孙思涵, MI Lu. 基于去趋势分析的大规模双馈风电场送出变压器差动保护[J]. 中国电力, 2023, 56(7): 186-197. |
| [9] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
| [10] | 梁伟, 吴林林, 赖启平, 李东晟, 徐曼, 沈沉. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56(4): 28-37. |
| [11] | 王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28. |
| [12] | 李建华, 曹路, 杨仁炘, 邓桢彦, 李征, 蔡旭. 华东沿海风电场群电网主动频率支撑策略[J]. 中国电力, 2023, 56(11): 49-58, 112. |
| [13] | 吴亚宁, 罗毅, 雷成, 黄豫, 梁宇, 周生存, 聂金峰. 基于改进型PEM和L指标的含风电场电力系统静态电压稳定评估[J]. 中国电力, 2022, 55(9): 192-203. |
| [14] | 周庆锋, 王思淳, 李德鑫, 刘佳琪, 李同. 基于DDPG的风电场动态参数智能校核知识学习模型[J]. 中国电力, 2022, 55(5): 32-38. |
| [15] | 盛师贤, 周鑫, 王德林, 廖佳思, 李婧祺, 康积涛. 虚拟同步风电场协同光伏电站附加阻尼控制方法[J]. 中国电力, 2022, 55(3): 177-186. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编
