中国电力 ›› 2025, Vol. 58 ›› Issue (5): 166-175.DOI: 10.11930/j.issn.1004-9649.202404024
陈茂新1(), 王凯伦2, 沈豫1, 曾振松1, 林学根1, 宋强2(
)
收稿日期:
2024-04-03
录用日期:
2025-01-23
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
CHEN Maoxin1(), WANG Kailun2, SHEN Yu1, ZENG Zhensong1, LIN Xuegen1, SONG Qiang2(
)
Received:
2024-04-03
Accepted:
2025-01-23
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
当海上风电场采用二极管整流器直流送出方式时,基于海上风机的构网控制实现海上交流电网的电压和频率支撑是关键的问题。针对目前研究中最受关注的Q/f型构网控制方案,以及新出现的P/f型构网控制方案,对多机功率耦合特性及稳定性进行了详细的分析比较。通过对构网型控制环节的机理分析揭示了Q/f型构网控制方案在有功和无功控制通路之间存在耦合特性,而P/f型构网控制方案则具有自然的功率控制解耦特性。基于小信号模型的详细分析表明:Q/f型构网控制方案的功率控制耦合特性可能导致多机间功率振荡问题;P/f型构网控制方案由于具有功率控制解耦特性,在不同负荷条件下均具有更好的稳定鲁棒性,更有利于实现远海大容量风电场数百台风机的同步稳定运行。
陈茂新, 王凯伦, 沈豫, 曾振松, 林学根, 宋强. 适用于二极管整流送出的海上风机构网型控制方案比较[J]. 中国电力, 2025, 58(5): 166-175.
CHEN Maoxin, WANG Kailun, SHEN Yu, ZENG Zhensong, LIN Xuegen, SONG Qiang. Comparison of Grid-Forming Control Solutions for Offshore Wind Farms Connected with Diode Rectifier-Based High Voltage DC Transmission[J]. Electric Power, 2025, 58(5): 166-175.
参数 | 数值 | 参数 | 数值 | |||
风电场1额定功率/MW | 600 | 二极管直流 平波电抗/mH | 120 | |||
风电场2额定功率/MW | 300 | Rdc/Ω | 1.5 | |||
风电场3额定功率/MW | 100 | Ldc/mH | 80 | |||
滤波电抗(p.u.) | 0.008+j0.2 | Ca1/μF | 36 | |||
滤波电容(p.u.) | 0.05 | Ca2/mF | 1.3 | |||
变压器漏抗(p.u.) | 0.004+j0.1 | La1/mH | 2 | |||
集电海缆等值电阻、电感、电容(相对于各风电场 基值)(p.u.) | La2/μH | 54.7 | ||||
二极管直流额定功率/MW | Ra1/Ω | 3.28 | ||||
二极管直流额定直流电压/kV | ±250 | Cb1/μF | 36 | |||
整流变压器变比/kV | 66/190 | Lb1/mH | 0.49 | |||
二极管变压器漏抗(p.u.) | 0.16 | Rb1/Ω | 59 |
表 1 系统参数
Table 1 Main parameters of the studied system
参数 | 数值 | 参数 | 数值 | |||
风电场1额定功率/MW | 600 | 二极管直流 平波电抗/mH | 120 | |||
风电场2额定功率/MW | 300 | Rdc/Ω | 1.5 | |||
风电场3额定功率/MW | 100 | Ldc/mH | 80 | |||
滤波电抗(p.u.) | 0.008+j0.2 | Ca1/μF | 36 | |||
滤波电容(p.u.) | 0.05 | Ca2/mF | 1.3 | |||
变压器漏抗(p.u.) | 0.004+j0.1 | La1/mH | 2 | |||
集电海缆等值电阻、电感、电容(相对于各风电场 基值)(p.u.) | La2/μH | 54.7 | ||||
二极管直流额定功率/MW | Ra1/Ω | 3.28 | ||||
二极管直流额定直流电压/kV | ±250 | Cb1/μF | 36 | |||
整流变压器变比/kV | 66/190 | Lb1/mH | 0.49 | |||
二极管变压器漏抗(p.u.) | 0.16 | Rb1/Ω | 59 |
参数 | 数值 | |
kq, kpp, kpi(Q/f方案) | 0.005, 1, 5 | |
kp, kq(P/f方案) | 0.05, 0.03 | |
功率测量滤波器时间常数/ms | 10 | |
kp.u., kiu(电压环PI参数) | 0.8, 0 | |
kpi, kii(电流环PI参数) | 1.6, 20 | |
PLL比例增益(海上频率测量) | 1.15 | |
站间通信延时/ms | 50 | |
kfi(MMC频率-功率环) | 150 | |
kpp, kpi(MMC功率-电压环) | 1, 10 |
表 2 控制参数
Table 2 Key control parameters
参数 | 数值 | |
kq, kpp, kpi(Q/f方案) | 0.005, 1, 5 | |
kp, kq(P/f方案) | 0.05, 0.03 | |
功率测量滤波器时间常数/ms | 10 | |
kp.u., kiu(电压环PI参数) | 0.8, 0 | |
kpi, kii(电流环PI参数) | 1.6, 20 | |
PLL比例增益(海上频率测量) | 1.15 | |
站间通信延时/ms | 50 | |
kfi(MMC频率-功率环) | 150 | |
kpp, kpi(MMC功率-电压环) | 1, 10 |
1 |
PAN E S, YUE B, LI X, et al. Integration technology and practice for long-distance offshore wind power in China[J]. Energy Conversion and Economics, 2020, 1 (1): 4- 19.
DOI |
2 |
LI Z X, SONG Q, AN F, et al. Review on DC transmission systems for integrating large-scale offshore wind farms[J]. Energy Conversion and Economics, 2021, 2 (1): 1- 14.
DOI |
3 |
SONG Q, YANG W B, ZHAO B, et al. Low-capacitance modular multilevel converter operating with high capacitor voltage ripples[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (10): 7456- 7467.
DOI |
4 | 罗澍忻, 韩应生, 余浩, 等. 构网型控制在提升高比例新能源并网系统振荡稳定性中的应用[J]. 南方电网技术, 2023, 17 (5): 39- 48. |
LUO Shuxin, HAN Yingsheng, YU Hao, et al. Application of grid-forming control in improving the oscillation stability of power systems with high proportion renewable energy integration[J]. Southern Power System Technology, 2023, 17 (5): 39- 48. | |
5 | BLASCO-GIMENEZ R, AÑÓ-VILLALBA S, RODRÍGUEZ-D’DERLÉE J, et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVDC link[J]. IEEE Transactions on Power Electronics, 2010, 25 (12): 3095- 3105. |
6 |
BLASCO-GIMENEZ R, ANÓ-VILLALBA S, RODRIGUEZ-D’DERLÉE J, et al. Diode-based HVdc link for the connection of large offshore wind farms[J]. IEEE Transactions on Energy Conversion, 2011, 26 (2): 615- 626.
DOI |
7 | MENKE P, ZUROWSKI R, CHRIST T, et al. 2nd generation DC grid access for large scale offshore wind farms[C]//14th Wind Integration Workshop, October 20-22, 2015, Brussels, Belgium. |
8 |
俞露杰, 付子玉, 朱介北, 等. 远海风电DRU-HVDC送出系统构网控制与启动方法综述[J]. 电力系统自动化, 2023, 47 (24): 63- 79.
DOI |
YU Lujie, FU Ziyu, ZHU Jiebei, et al. Review on grid-forming control and start-up method of diode-rectifier-unit based HVDC transmission system for remote offshore wind farm[J]. Automation of Electric Power Systems, 2023, 47 (24): 63- 79.
DOI |
|
9 | PRIGNITZ C, ECKEL H G, ACHENBACH S, et al. FixReF: a control strategy for offshore wind farms with different wind turbine types and diode rectifier HVDC transmission[C]//2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Vancouver, BC, Canada. IEEE, 2016: 1–7. |
10 | 丰力, 张莲梅, 韦家佳, 等. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57 (9): 80- 93. |
FENG Li, ZHANG Lianmei, WEI Jiajia, et al. Development & thinking of offshore wind power based on life cycle economic evaluation[J]. Electric Power, 2024, 57 (9): 80- 93. | |
11 | 胡小康, 王中权, 綦晓, 等. 考虑最低惯量需求的海上风电与海岛微网频率交互控制策略[J]. 南方电网技术, 2023, 17 (5): 80- 90. |
HU Xiaokang , WANG Zhongquan , QI Xiao, et al. Interaction Frequency regulation strategy between offshore wind farm and island microgrids considering minimum inertia requirement[J]. Southern Power System Technology, 2023, 17 (5): 80- 90. | |
12 |
YU L J, LI R, XU L. Distributed PLL-based control of offshore wind turbines connected with diode-rectifier-based HVDC systems[J]. IEEE Transactions on Power Delivery, 2018, 33 (3): 1328- 1336.
DOI |
13 |
CARDIEL-ÁLVAREZ M Á, ARNALTES S, RODRIGUEZ-AMENEDO J L, et al. Decentralized control of offshore wind farms connected to diode-based HVDC links[J]. IEEE Transactions on Energy Conversion, 2018, 33 (3): 1233- 1241.
DOI |
14 | 黄伟, 翟苏巍, 路学刚, 等. 电压控制对构网型变换器频率响应特性影响分析[J]. 南方电网技术, 2024, 18 (5): 102- 111. |
HUANG Wei, ZHAI Suwei, LU Xuegang, et al. Analysis of the impact of voltage control on the frequency response characteristics of grid-forming converter[J]. Southern Power System Technology, 2024, 18 (5): 102- 111. | |
15 |
ZHANG Z R, JIN Y Q, XU Z. Grid-forming control of wind turbines for diode rectifier unit based offshore wind farm integration[J]. IEEE Transactions on Power Delivery, 2023, 38 (2): 1341- 1352.
DOI |
16 | 张哲任, 金砚秋, 徐政. 两种基于构网型风机和二极管整流单元的海上风电送出方案[J]. 高电压技术, 2022, 48 (6): 2098- 2107. |
ZHANG Zheren, JIN Yanqiu, XU Zheng. Two offshore wind farm integration schemes based on grid forming wind turbines and diode rectifier unit[J]. High Voltage Engineering, 2022, 48 (6): 2098- 2107. | |
17 | 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46 (9): 3586- 3595. |
XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46 (9): 3586- 3595. | |
18 |
POGAKU N, PRODANOVIC M, GREEN T C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2007, 22 (2): 613- 625.
DOI |
19 |
YU L J, LI R, XU L, et al. Analysis and control of offshore wind farms connected with diode rectifier-based HVDC system[J]. IEEE Transactions on Power Delivery, 2020, 35 (4): 2049- 2059.
DOI |
20 |
WANG K L, SONG Q, ZHAO B, et al. Grid-forming control of offshore wind farms connected with diode-based HVDC links based on remote active power regulation[J]. IEEE Transactions on Sustainable Energy, 2024, 15 (2): 1315- 1327.
DOI |
21 |
BLASCO-GIMENEZ R, APARICIO N, ANO-VILLALBA S, et al. LCC-HVDC connection of offshore wind farms with reduced filter banks[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (6): 2372- 2380.
DOI |
22 |
王凯伦, 宋强, 周月宾, 等. 模块化多电平换流器的三轴解耦控制策略[J]. 电力建设, 2022, 43 (5): 29- 39.
DOI |
WANG Kailun, SONG Qiang, ZHOU Yuebin, et al. Three-axis decoupling controller for modular multilevel converter[J]. Electric Power Construction, 2022, 43 (5): 29- 39.
DOI |
|
23 |
YANG W B, SONG Q, LIU W H. Decoupled control of modular multilevel converter based on intermediate controllable voltages[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (8): 4695- 4706.
DOI |
[1] | 赵欣洋, 邹洪森, 杨晨, 李玉琦, 李博通, 刘思源. 基于模量反向行波的接地极线路故障类型识别与定位方法[J]. 中国电力, 2025, 58(2): 33-42. |
[2] | 赵静波, 李文博, 朱鑫要, 孙庆斌, 郝全睿. 海上风电经柔直送出系统受端扰动自适应控制策略[J]. 中国电力, 2025, 58(1): 26-38. |
[3] | 周啸, 阳岳希, 寇龙泽, 李云丰, 钱学威, 郝捷, 景卫哲. 模块化多电平柔性直流换流器高频振荡抑制策略与参数优化设计[J]. 中国电力, 2025, 58(1): 50-60. |
[4] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[5] | 刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57(9): 94-102. |
[6] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[7] | 黄宁泊, 高建伟, 许传博, 徐选华, 赵舒通, 缑迅杰, 姜晓静. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024, 57(9): 113-123. |
[8] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[9] | 雷霄, 许锐文, 郑宁敏, 李德才, 刘世成. 闽粤联网直流工程与SVG/HAPF协同运行特性及现场试验[J]. 中国电力, 2024, 57(4): 130-138. |
[10] | 彭茂兰, 冯雷, 王宇, 徐李清, 赵薇, 郭春义. 基于桥臂调制波调整的多端柔直系统直流过电压抑制策略[J]. 中国电力, 2024, 57(4): 171-181. |
[11] | 周于清, 李大虎, 姚伟, 宗启航, 周泓宇, 文劲宇. 受端近区光伏电站对LCC-HVDC系统稳定性影响分析[J]. 中国电力, 2024, 57(3): 170-182. |
[12] | 阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196. |
[13] | 赵越, 严干贵, 王振洋, 任爽, 王大中, 郭剑宇. 风火打捆经LCC-HVDC送出系统的次同步扭振分析[J]. 中国电力, 2023, 56(6): 18-30. |
[14] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[15] | 苏开元, 董文凯, 邱银锋, 魏澈, 谢小荣. 分散式风储一体化系统提升海上油田群电网频率稳定性研究[J]. 中国电力, 2023, 56(5): 163-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||