中国电力 ›› 2025, Vol. 58 ›› Issue (4): 90-97.DOI: 10.11930/j.issn.1004-9649.202409072

• 风电机组暂态运行控制与试验验证关键技术 • 上一篇    下一篇

基于卷积双向长短期记忆网络的风电机组传动系统疲劳载荷预测

王晓东1(), 李清1(), 付德义2, 刘颖明1, 王若瑾1   

  1. 1. 沈阳工业大学 电气工程学院,辽宁 沈阳 110870
    2. 新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司),北京 100192
  • 收稿日期:2024-09-18 录用日期:2024-12-17 发布日期:2025-04-23 出版日期:2025-04-28
  • 作者简介:
    王晓东(1978),男,博士,教授,从事风电大数据处理与智能功率预测、大型风电机组优化设计与控制、大规模储能系统及其功率控制等研究,E-mail:13889296091@163.com
    李清(2000),女,通信作者,硕士研究生,从事风电机组功率载荷协调优化研究,E-mail:2569351753@qq.com
  • 基金资助:
    国家电网有限公司科技项目(考虑安全约束的电网故障过程风电机组机电耦合机理及控制方法研究,4000-202355454A-3-2-ZN)。

Fatigue Load Prediction of Wind Turbine Drive Train Based on CNN-BiLSTM

WANG Xiaodong1(), LI Qing1(), FU Deyi2, LIU Yingming1, WANG Ruojin1   

  1. 1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
    2. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems (China Electric Power Research Institute), Beijing 100192, China
  • Received:2024-09-18 Accepted:2024-12-17 Online:2025-04-23 Published:2025-04-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Electromechanical Coupling Mechanism and Control Method of Wind Turbine During Grid Fault Considering Security Constraints, No.4000-202355454A-3-2-ZN).

摘要:

在役风电机组传动系统的疲劳载荷一般基于关键部位应力测量,通过雨流计数法计算进行量化,该过程耗时长、成本高。针对在役风电机组控制策略和参数优化中传统疲劳载荷量化模型偏差较大的问题,在风电机组状态数据的基础上提出了一种基于卷积双向长短期记忆神经网络(convolutional neural network-bidirectional long short-term memory,CNN-BiLSTM)的传动系统疲劳载荷预测模型。首先,以基于额定风速及以上工况OpenFAST的仿真数据构建疲劳载荷特征数据库,并进行训练和测试。然后,将模型的预测数据与实际数据进行对比,利用相关评价指标对模型的预测性能进行评估,验证了该模型的有效性。最后,通过与长短期记忆和深度神经网络两种模型的预测结果对比,证明了CNN-BiLSTM载荷预测模型能进一步提高风电机组传动系统载荷预测的准确度。

关键词: 疲劳载荷, 风电机组, LSTM, 载荷预测, CNN-BiLSTM

Abstract:

The fatigue loads of operational wind turbine drivetrain systems are typically quantified using the rainflow counting method based on stress measurements at critical components, a process that is time-consuming and costly. This paper addresses the significant deviations observed in traditional fatigue load quantification models employed for control strategies and parameter optimization in operational wind turbines. We propose a fatigue load prediction model for the drivetrain system based on a convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) architecture, utilizing state data from wind turbines. First, we construct a fatigue load feature database using simulation data from OpenFAST under rated wind speed conditions and above, which is subsequently used for training and testing the model. We then compare the model's predicted data with actual data, employing relevant evaluation metrics to assess the predictive performance of the model, thereby validating its effectiveness. Finally, by comparing the prediction results with those from long short-term memory and deep neural network models, we demonstrate that the CNN-BiLSTM load prediction model significantly enhances the accuracy of load predictions for wind turbine drivetrain systems.

Key words: fatigue load, wind turbine, LSTM, load prediction, CNN-BiLSTM