中国电力 ›› 2021, Vol. 54 ›› Issue (3): 38-44.DOI: 10.11930/j.issn.1004-9649.202006190

• 国家“十三五”智能电网重大专项专栏:(六)先进计算与人工智能技术专栏 • 上一篇    下一篇

基于改进Faster RCNN的小尺度入侵目标识别及定位

马静怡1, 崔昊杨1, 张明达2, 孙益辉2, 许永鹏3   

  1. 1. 上海电力大学 电子与信息工程学院,上海 200090;
    2. 国网浙江省电力公司奉化供电有限公司,浙江 宁波 315500;
    3. 上海交通大学 电气工程系,上海 200240
  • 收稿日期:2020-06-17 修回日期:2021-10-02 出版日期:2021-03-05 发布日期:2021-03-17
  • 作者简介:马静怡(1995-),女,硕士研究生,从事图像处理与目标检测研究,E-mail:296546698@qq.com;崔昊杨(1978-),男,通信作者,博士,教授,从事电力设备状态检测、红外探测与检测研究,E-mail:cuihy@shiep.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61872230,61107081)

Small Scale Invade-Target Recognition and Location Based on Improved Faster RCNN

MA Jingyi1, CUI Haoyang1, ZHANG Mingda2, SUN Yihui2, XU Yongpeng3   

  1. 1. Department of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
    2. Fenghua Power Supply Company, State Grid Zhejiang Electric Power Company, Ningbo 315500, China;
    3. Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-06-17 Revised:2021-10-02 Online:2021-03-05 Published:2021-03-17
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No.61872230, No.61107081)

摘要: 为实现无人值守变电站视频监控系统对动态小尺寸入侵目标体的识别与定位,提出一种基于改进Faster RCNN的快速神经网络辨识方法。该方法通过构建深度卷积网络计算目标样本的强语义特征,并利用密集连接的传输通道融合位置信息,从而得到适应于小目标检测的基础骨干网络;然后利用锚框挑选出目标可能存在的区域,采用双线性插值法计算定位框的坐标以实现像素级别的精确定位。使用采集的变电站监控图像对模型进行训练,得到适应小尺寸异物的改进Faster RCNN检测模型。通过对比实验结果表明,所提改进方法在进行小尺寸异物检测时能够保持高精度并具有时效性,具备一定的工程实用价值。

关键词: 小目标检测, 深度学习, 卷积神经网络, Faster RCNN, 双线性插值

Abstract: In order to realize the recognition and location of dynamic small-scale intrusion targets with the video monitoring system in unattended substations, a fast neural network identification method based on improved Faster RCNN is proposed. In this method, the strong semantic features of the target samples are calculated by constructing the deep convolution network, and the location information is fused using the densely connected transmission channels, so as to obtain the basic backbone network suitable for small target detection. Then, the candidate region of the target is generated with the region proposal network, and the coordinates of the location frame are calculated using the bilinear interpolation method to achieve the accurate positioning at the pixel level. The model is trained based on the actual image sample set, and the improved Faster RCNN detection model is obtained. The experimental results show that the improved method can maintain high accuracy and timeliness in detection of small-scale foreign objects, and has a certain value for engineering application.

Key words: small-scale object detection, deep learning, convolution neural network, Faster RCNN, bilinear interpolation