[1] 张巧霞, 王广民, 李江林, 等. 变电站远程运维平台设计与实现[J]. 电力系统保护与控制, 2019, 47(10): 164-172. ZHANG Qiaoxia, WANG Guangmin, LI Jianglin, et al. Design and implementation of substation remote operation and maintenance platform[J]. Power System Protection and Control, 2019, 47(10): 164-172. [2] 周俊煌, 黄廷城, 谢小瑜, 等. 视频图像智能识别技术在输变电系统中的应用研究综述[J/OL]. 中国电力: 1-12[2020-08-07]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200414.1351.004.html. ZHOU Junhuang, HUANG Tingcheng, XIE Xiaoyu, et al. Review of application research of video image intelligent recognition technology in power transmission and distribution systems[J]. Electric Power: 1-12[2020-08-07]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200414.1351.004.html. [3] 章立. 可见光图像弱小目标的检测与跟踪研究[D]. 西安: 西安科技大学, 2018. ZHANG Li. Research on detection and tracking of weak small target in visible light image[D]. Xi'an: Xi'an University of Science and Technology, 2018. [4] 赵振兵, 王乐. 一种航拍绝缘子串图像自动定位方法[J]. 仪器仪表学报, 2014, 35(3): 558-565 ZHAO Zhenbing, WANG Le. Aerial insulator string image automatic location method[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 558-565 [5] 冯玲, 黄新波, 朱永灿. 基于图像处理的输电线路覆冰厚度测量[J]. 电力自动化设备, 2011, 31(10): 76-80 FENG Ling, HUANG Xinbo, ZHU Yongcan. Transmission line icing thickness measuring based on image processing[J]. Electric Power Automation Equipment, 2011, 31(10): 76-80 [6] KULKARNI A, CALLAN J. Selective search[J]. ACM Transactions on Information Systems, 2015, 33(4): 1-33. [7] XIANG P, ZHOU H X, LI H, et al. Hyperspectral anomaly detection by local joint subspace process and support vector machine[J]. International Journal of Remote Sensing, 2020, 41(10): 3798-3819. [8] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. IEEE, 2015: 1440-1448. [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 779-788. [11] 王万国, 田兵, 刘越, 等. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学学报, 2017, 19(2): 256-263 WANG Wanguo, TIAN Bing, LIU Yue, et al. Study on the electrical devices detection in UAV images based on region based convolutional neural networks[J]. Journal of Geo-Information Science, 2017, 19(2): 256-263 [12] 林刚, 王波, 彭辉, 等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218 LIN Gang, WANG Bo, PENG Hui, et al. Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J]. Electric Power Automation Equipment, 2019, 39(5): 213-218 [13] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84 LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79-84 [14] 韩松臣, 张比浩, 李炜, 等. 基于改进Faster-RCNN的机场场面小目标物体检测算法[J]. 南京航空航天大学学报, 2019, 51(6): 735-741 HAN Songchen, ZHANG Bihao, LI Wei, et al. Small target detection in airport scene via modified faster-RCNN[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6): 735-741 [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778. [16] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 936-944. [17] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 2261-2269. [18] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition (ICPR'06). Hong Kong, China. IEEE, 2006: 850-855. [19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 3431-3440. [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]// Conference and Workshop on Neural Information Processing Systems. 2012: 1097-1105. [21] 刘建伟, 赵会丹, 罗雄麟, 等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报, 2020, 46(6): 1090-1120 LIU Jianwei, ZHAO Huidan, LUO Xionglin, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020, 46(6): 1090-1120 [22] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323. [23] 谢美华, 王正明. 基于图像梯度信息的插值方法[J]. 中国图象图形学报, 2005, 10(7): 856-861 XIE Meihua, WANG Zhengming. Image interpolation based on gradient[J]. Journal of Image and Graphics, 2005, 10(7): 856-861 [24] DING H J, PAN Z P, CEN Q, et al. Multi-scale fully convolutional network for gland segmentation using three-class classification[J]. Neurocomputing, 2020, 380(7): 150-161. [25] 龚钢军, 张帅, 吴秋新, 等. 基于TensorFlow的高压输电线路异物识别[J]. 电力自动化设备, 2019, 39(4): 204-209, 216 GONG Gangjun, ZHANG Shuai, WU Qiuxin, et al. Foreign body identification based on TensorFlow for high voltage transmission line[J]. Electric Power Automation Equipment, 2019, 39(4): 204-209, 216 [26] 万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097-3105 WAN Jilin, WANG Huifang, GUAN Minyuan, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-Net[J]. Power System Technology, 2020, 44(8): 3097-3105
|