[1] 曾鸣, 杨雍琦, 李源非, 等. 能源互联网背景下新能源电力系统运营模式及关键技术初探[J]. 中国电机工程学报, 2016, 36(3): 681-691 ZENG Ming, YANG Yongqi, Li Yuanfei, et al. The preliminary research for key operation mode and technologies of electrical power system with renewable energy sources under energy internet[J]. Proceedings of the CSEE, 2016, 36(3): 681-691 [2] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8 SUN Hongbin, GUO Qinglai, PAN Zhaoguang. Energy Internet: concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8 [3] 刘敦楠, 徐尔丰, 许小峰. 面向园区微网的“源-网-荷-储”一体化运营模式[J]. 电网技术, 2018, 42(3): 681-689 LIU Dunnan, XU Erfeng, XU Xiaofeng. “Source-network-load-storage” integrated operation model for microgrid in park[J]. Power System Technology, 2018, 42(3): 681-689 [4] 周京华, 刘劲东, 陈亚爱, 等. 大功率光伏逆变器的低电压穿越控制[J]. 电网技术, 2013, 37(7): 1799-1807 ZHOU Jinghua, LIU Jindong, CHEN Yaai, et al. Low voltage ride-through control of high power inverter for grid-connection of photovoltaic generation[J]. Power System Technology, 2013, 37(7): 1799-1807 [5] 陶顺, 姚黎婷, 廖坤玉, 等. 光伏逆变器直流电压扰动引起的间谐波电流解析模型[J]. 电网技术, 2018, 42(3): 878-885 TAO Shun, YAO Liting, LIAO Kunyu, et al. Analytical model for inter-harmonic current caused by DC voltage disturbance of photovoltaic inverter[J]. Power System Technology, 2018, 42(3): 878-885 [6] 边莉, 边晨源. 电网故障诊断的智能方法综述[J]. 电力系统保护与控制, 2014, 42(3): 146-153 BIAN Li, BIAN Chenyuan. Review on intelligence fault diagnosis in power networks[J]. Power System Protection and Control, 2014, 42(3): 146-153 [7] 张可, 周东华, 柴毅. 复合故障诊断技术综述[J]. 控制理论与应用, 2015, 32(9): 1143-1157 ZHANG Ke, ZHOU Donghua, CHAI Yi. Review of multiple fault diagnosis methods[J]. Control Theory & Applications, 2015, 32(9): 1143-1157 [8] 王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6): 1459-1472 WANG Shaoping. Prognostics and health management key technology of aircraft airborne system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1459-1472 [9] HAN Te, LIU Chao, WU Linjiang, et al. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems[J]. Mechanical Systems and Signal Processing, 2019, 117: 170-187. [10] COSME L B, CAMINHAS W M, D'ANGELO M F S V, et al. A novel fault-prognostic approach based on interacting multiple model filters and fuzzy systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 519-528. [11] 代杰杰, 宋辉, 盛戈皞, 等. 采用LSTM网络的电力变压器运行状态预测方法研究[J]. 高电压技术, 2018, 44(4): 1099-1106 DAI Jiejie, SONG Hui, SHENG Gehao, et al. Prediction method for power transformer running state based on LSTM network[J]. High Voltage Engineering, 2018, 44(4): 1099-1106 [12] 王恒, 马海波, 黄希, 等. 基于Kolmogrov-Smirnov检验和LS-SVM的机械设备故障预测[J]. 中南大学学报(自然科学版), 2016, 47(6): 1924-1929 WANG Heng, MA Haibo, HUANG Xi, et al. Prognostics of mechanical equipment based on Kolmogrov-Smirnov test and LS-SVM[J]. Journal of Central South University(Science and Technology), 2016, 47(6): 1924-1929 [13] ZHENG Jinde, JIANG Zhanwei, PAN Haiyang. Sigmoid-based refined composite multiscale fuzzy entropy and t-SNE based fault diagnosis approach for rolling bearing[J]. Measurement, 2018, 129: 332-342. [14] DHALMAHAPATRA K, SHINGADE R, MAHAJAN H, et al. Decision support system for safety improvement: An approach using multiple correspondence analysis, t-SNE algorithm and K-means clustering[J]. Computers & Industrial Engineering, 2019, 128: 277-289. [15] LAURENS Van Der Maaten, GEOFFREY Hinton. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. [16] 姚雪曼. 基于流形学习的降维技术的研究与实现[D]. 北京: 北京邮电大学, 2017. YAO Xueman. The research and implementation of dimentionality reduction technology based on manifold learning[D]. Beijing: Beijing University of Posts and Telecom, 2017. [17] 姜战伟, 郑近德, 潘海洋, 等. 基于多尺度时不可逆与t-SNE流形学习的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(17): 61-68, 84 JIANG Zhanwei, ZHENG Jinde, PAN Haiyang, et al. Rolling bearing fault diagnosis method based on multiscale time irreversibility and t-SNE manifold learning[J]. Journal of Vibration and Shock, 2017, 36(17): 61-68, 84 [18] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. [19] ZHANG Xiaochen, JIANG Dongxiang, LONG Quan, et al. Rotating machinery fault diagnosis for imbalanced data based on decision tree and fast clustering algorithm[J]. Journal of Vibroengineering, 2017, 19(6): 4247-4259. [20] MEHNOOD R, ZHANG Guangzhi, BIE Rongfang, et al. Clustering by fast search and find of density peaks via heat diffusion[J]. Neurocomputing, 2016, 208: 210-217. [21] LEE J, WU Fangji, ZHAO Wenyu, et al. Prognostics and health management design for rotary machinery systems: Reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1/2): 314-334. [22] SAIDI L, BEN ALI J, BENBOUZID M, et al. An integrated wind turbine failures prognostic approach implementing Kalman smoother with confidence bounds[J]. Applied Acoustics, 2018, 138: 199-208. [23] 李斌, 何佳伟. 多端柔性直流电网故障隔离技术研究[J]. 中国电机工程学报, 2016, 36(1): 87-95 LI Bin, HE Jiawei. Research on the DC fault isolating technique in multi-terminal DC system[J]. Proceedings of the CSEE, 2016, 36(1): 87-95 |