中国电力 ›› 2020, Vol. 53 ›› Issue (6): 41-47.DOI: 10.11930/j.issn.1004-9649.201902032

• 人工智能在电力系统的应用 • 上一篇    下一篇

基于t-SNE流形学习与快速聚类算法的光伏逆变器故障预测技术

张筱辰1,2, 朱金大1,2, 杨冬梅1,2, 陈永华1,2, 杜炜1,2   

  1. 1. 南瑞集团(国网电力科学研究院)有限公司,江苏 南京 211106;
    2. 国电南瑞科技股份有限公司,江苏 南京 211106
  • 收稿日期:2019-02-11 修回日期:2019-12-10 发布日期:2020-06-05
  • 作者简介:张筱辰(1988-),男,通信作者,博士,出站博士后,从事信息物理系统、综合能源系统研究,E-mail:zhangxch2008@126.com;朱金大(1964-),男,高级工程师(教授级),从事智能配用电及其自动化、能源互联网研究,E-mail:zhujinda@sgepri.sgcc.com.cn;杨冬梅(1983-),女,高级工程师,从事综合能源、能源互联网研究,E-mail:yangdongmei@sgepri.sgcc.com.cn
  • 基金资助:
    国家重点研发计划资助项目(2018YFB0905000)

Photovoltaic Inverter Fault Prediction Technology Based on t-SNE Manifold Learning and Fast Clustering Algorithm

ZHANG Xiaochen1,2, ZHU Jinda1,2, YANG Dongmei1,2, CHEN Yonghua1,2, DU Wei1,2   

  1. 1. NARI Group Corporation(State Grid Electric Power Research Institute), Nanjing 211106, China;
    2. NARI Technology Co., Ltd., Nanjing 211106, China
  • Received:2019-02-11 Revised:2019-12-10 Published:2020-06-05
  • Supported by:
    This work is supported by National Key R&D Program of China (No.2018YFB0905000)

摘要: 光伏逆变器作为太阳能光伏发电系统的关键设备,其健康状态直接影响电力系统的安全与稳定。提出了一种基于t-SNE流形学习与快速聚类算法的光伏逆变器故障预测技术,将光伏逆变器集群的历史监测信号作为原始特征库,采用t-SNE降维算法提取光伏逆变器集群的主特征矩阵,基于快速聚类算法搜寻每一采样时刻的聚类中心光伏逆变器,分别计算每台逆变器在各个采样时刻的偏心距离,得到归一化的累积偏心距离矩阵,通过合理设定预警阈值,从而实现光伏逆变器故障的准确预测。最后基于设计开发的分布式光伏发电监控系统,利用采集的光伏逆变器集群的历史运行数据对算法进行了测试。结果表明,提出的光伏逆变器故障预测技术能够提前准确地预测光伏逆变器故障,有助于保障设备健康平稳运行。

关键词: 故障预测, 流形学习, 聚类算法, 逆变器, 光伏

Abstract: As the key component of solar photovoltaic power generation system, photovoltaic inverter directly affects the safety and stable operation of power systems. Therefore, a photovoltaic inverter fault prediction technology is proposed based on t-SNE manifold learning and fast clustering algorithm. Firstly, the historical monitoring data of the PV inverter cluster are used to construct the original feature database. Secondly, the t-SNE dimensionality reduction algorithm is applied to extract the main feature matrix of the PV inverter cluster. Thirdly, the cluster center PV inverter at each sampling time is searched by the fast clustering algorithm, and the eccentricity distance of each inverter at the sampling time is calculated respectively. Then, the normalized accumulative eccentricity distance matrix is obtained. By setting a rational warning threshold, the accurate fault prediction is thus realized for photovoltaic inverters. Finally, the algorithm is tested with the collected PV inverter cluster data acquired by the distributed photovoltaic generation monitoring system. The results show that the proposed fault prediction technology can accurately predict the photovoltaic inverter faults in advance, which is helpful to ensure the healthy and stable operation of the equipment.

Key words: fault prediction, manifold learning, clustering algorithm, inverter, photovoltaic