[1] LI P, XU D, ZHOU Z Y, et al. Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 66–73. [2] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2017. [3] 唐聪岚, 卢继平, 谢应昭, 等. 电力系统短期负荷预测方法综述[J]. 电网技术, 2014, 38(7): 2014–2020 TANG Chonglan, LU Jiping, XIE Yinghui, et al. Improved data stream on-line segmentation based ultra-short-term load forecasting[J]. Power System Technology, 2014, 38(7): 2014–2020 [4] 朱斌, 姜宁, 霍雪松, 等. 南京城市电网核心区短期负荷特性分析及预测[J]. 中国电力, 2016, 49(2): 67–72, 89 ZHU Bin, JIANG Ning, HUO Xuesong, et al. Forecasting and studies on load characteristics of Nanjing center area power network[J]. Electric Power, 2016, 49(2): 67–72, 89 [5] 雷邵兰, 古亮, 杨佳, 等. 重庆地区电力负荷特性及其影响因素分析[J]. 中国电力, 2014, 47(12): 61–71 LEI Shaolan, GU Liang, YANG Jia, et al. Analysis of electric power load characteristics and its influencing factors in Chongqing region[J]. Electric Power, 2014, 47(12): 61–71 [6] 张帆, 张峰, 张士文. 基于提升小波的时间序列分析法的电力负荷预测[J]. 电力系统及其自动化, 2017, 39(3): 72–76 ZHANG Fan, ZHANG Feng, ZHANG Shiwen. Power load forecasting in the time series analysis method based on lifting wavele[J]. Electrical Automation, 2017, 39(3): 72–76 [7] 栗然, 柯拥勤, 张孝乾, 等. 基于时序-支持向量机的风电场发电功率预测[J]. 中国电力, 2012, 45(1): 64–68 LI Ran, KE Yongqin, ZHANG Xiaoqian, et al. Wind power forecasting based on time series and SVM[J]. Electric Power, 2012, 45(1): 64–68 [8] QUAIYUM S, KHAN Y, RAHMAN S. Artificial neural network based short term load forecasting of power system[J]. International Journal of Computer Applications, 2011, 30(4): 1–7. [9] 于道林, 张智晟, 韩少晓, 等. 计及需求响应的Elman-NN短期负荷预测模型研究[J]. 电工电能新技术, 2017, 36(4): 59–65 YU Dao guang, ZHANG Zhisheng, HAN Shaoxiao, et al. Study of short-term load forecasting model based on Elman-NN considering demand response[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(4): 59–65 [10] RASHIDI S, VAFAKHAH M, LAFDANI E K, et al. Evaluating the support vector machine for suspended sediment load forecasting based on gamma test[J]. Arabian Journal of Geosciences, 2016, 9(11): 583. [11] 谢敏, 邓佳梁, 吉祥, 等. 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术, 2017, 41(1): 210–214 XIE Min, DENG Jialiang, JI Xiang, et al. Cooling load forecasting method based on support vector machine optimized with entropy and variable accuracy roughness set[J]. Power System Technology, 2017, 41(1): 210–214 [12] HE Y Y, ZHENG Y Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function[J]. Energy, 2018, 154: 143–156. [13] 张素香, 赵丙镇, 王风雨, 等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报, 2015, 35(1): 37–42 ZHANG Suxiang, ZHAO Bingzhen, WANG Fengyu, et al. Short-term power load forecasting based on big data[J]. Proceedings of the CSEE, 2015, 35(1): 37–42 [14] 吴潇雨, 和敬涵, 张沛, 等. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 2015, 39(12): 50–55 WU Xiaoyu, HE Jinghan, ZHANG Pei, et al. Power system short-term load forecasting based on improved random forest with grey ralation projection[J]. Automation of Electric Power Systems, 2015, 39(12): 50–55 [15] 黄青平, 李玉娇, 刘松, 等. 基于模糊聚类与随机森林的短期负荷预测[J]. 电测与仪表, 2017, 54(23): 41–46 HUANG Qingping, LI Yujiao, LIU Song, et al. Short-time load forecasting based on fuzzy clustering and random forest[J]. Electrical Measurement & Instrumentation, 2017, 54(23): 41–46 [16] 汤庆峰, 刘念, 张建华, 等. 基于EMD-KELM-EKF与参数优选的用户侧微电网短期负荷预测方法[J]. 电网技术, 2014, 38(10): 2691–2699 TANG Qingfeng, LIU Nian, ZHANG Jianhua, et al. A short-term load forecasting method for micro-grid based on EMD-KELM-EKF and parameter optimization[J]. Power System Technology, 2014, 38(10): 2691–2699 [17] 叶林, 刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报, 2011, 31(31): 102–108 YE Lin, LIU Peng. Combined model based on EMD-SVM for short-term wind power prediction[J]. Proceedings of the CSEE, 2011, 31(31): 102–108 [18] REN Y, SUGANTHAN P N, SRIKANTH N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 236–244. [19] 曲正伟, 张坤, 王云静, 等. 基于PSO-OMP优化的WD-ASD超短期负荷预测[J]. 电工电能新技术, 2017, 36(12): 39–45 QU Zhengwei, ZHANG Kun, WANG Yunjing, et al. Short-term load forecasting based on WD-ASD optimized by PSO-OMP[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(12): 39–45 [20] 邹红波, 伏春林, 喻圣. 基于Akima-LMD和GRNN的短期负荷预测[J]. 电工电能新技术, 2018, 37(1): 51–56 ZOU Hongbo, FU Chunlin, YU Sheng. Short-term load forecasting based on Akima-LMD and GRNN[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1): 51–56 [21] DOU C X, ZHENG Y H, YUE D, et al. Hybrid model for renewable energy and loads prediction based on data mining and variational mode decomposition[J]. IET Generation, Transmission & Distribution, 2018, 12(11): 2642–2649. [22] 温锦斌. 基于频域分解的短期风电负荷预测[D]. 上海: 上海交通大学, 2013. WEN Jinbin. Short-term wind power forecasting based on frequency domain decomposition[D]. Shanghai: Shanghai Jiaotong University, 2013. [23] 穆钢, 侯凯元, 杨右虹, 等. 负荷预报中负荷规律性评价方法的研究[J]. 中国电机工程学报, 2001, 21(10): 96–101 MU Gang, HOU Kaiyuan, YANG Youhong, et al. Studies on load regularity evaluating method for load forecasting[J]. Proceedings of the CSEE, 2001, 21(10): 96–101 [24] 蒋建东, 宋苗菊, 贾伟. 基于Mallat算法的日负荷预测实用方法研究[J]. 电力系统保护与控制, 2009, 37(20): 89–92 JIANG Jiandong, SONG Miaoju, JIA Wei, et al. Study on the daily load forecasting method based on Mallat algorithm[J]. Power System Protection and Control, 2009, 37(20): 89–92 [25] 温正. 精通MATLAB智能算法[M]. 北京: 清华大学出版社, 2015. [26] 李光珍, 刘文颖, 云会周, 等. 母线负荷预测中样本数据预处理的新方法[J]. 电网技术, 2010, 34(2): 149–154 LI Guangzhen, LIU Wenying, YUN Huizhou, et al. A new data preprocessing method for bus load forecasting[J]. Power System Technology, 2010, 34(2): 149–154
|