中国电力 ›› 2016, Vol. 49 ›› Issue (2): 136-141.DOI: 10.11930/j.issn.1004-9649.2016.02.136.05

• 新能源 • 上一篇    下一篇

基于SARIMA模型的风电场月发电量预测研究

郭丹1,胡博1,刘俊德2,赵静翔3,朴在林1   

  1. 1.沈阳农业大学 信息与电气工程学院,辽宁 沈阳 110866;
    2.国网辽阳供电公司,辽宁 辽阳 111000;
    3. 中国农业大学 信息与电气工程学院,北京 100083
  • 收稿日期:2015-09-24 出版日期:2016-02-18 发布日期:2016-03-21
  • 作者简介:郭丹(1982-),女,辽宁沈阳人,讲师,从事电力系统及其自动化研究。E-mail: goldenflying123@163.com
  • 基金资助:
    国家科技支撑计划资助项目(2012BAJ26B01)

Research on Monthly Power Generation Forecast of Wind Power Farm Based on Seasonal Auto-Regressive Integrated Moving Average Model

GUO Dan1, HU Bo1, LIU Junde2, ZHAO Jingxiang3, PIAO Zailin1   

  1. 1. College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China;
    2. State Grid Liaoyang Electric Power Supply Company, Liaoyang 111000, China;
    3. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
  • Received:2015-09-24 Online:2016-02-18 Published:2016-03-21
  • Supported by:
    This work is supported by National Natural Science Foundation of China(No. 71473083) and Beijing Natural Science Foundation (No. 9142016).

摘要: 风力发电由于其清洁性、波动性、随机性及不稳定性,向电网输送绿色电能的同时也对电网的可靠运行造成了一定的冲击,因此风电发电量预测的准确性对电网科学合理调度、安全稳定运行具有至关重要的作用。以大数据分析、多学科交叉融合为背景,以负荷预测为基础理论,利用计量经济学分析方法对风电场月发电量数据进行分析、建模和预测。对辽宁地区某49.5 MW风电场月发电量数据进行收集整理,利用计量经济学分析软件EVIEWS对采样数据进行分析,并采用SARIMA模型对风电场月发电量数据进行拟合和预测,达到了较好的预测效果。

关键词: 风电场, 月发电量, SARIMA模型

Abstract: Due to the characteristics of volatility and randomness, wind power brings a certain impact on reliable operation of power grid. Therefore, the accuracy of wind power generation forecast plays a critical role in scientific and reasonable dispatching, and will also influence the safe and stable operation of power grid. Under the background of big data analysis and multidisciplinary integration, the econometric method has been applied in this paper to analyze the monthly power generation data of wind power farms and models are constructed for power generation forecast based on the basic theory of load forecasting. The monthly power generation data of a 49.5 MW wind power farm in Liaoning area are collected and analyzed by using the econometric software EVIEWS, and the SARIMA model is used to forecast the monthly power generation of the wind power farm with a satisfactory results.

Key words: wind power farm, monthly power generation, SARIMA model

中图分类号: