[1] 国家发展改革委. 可再生能源发展“十三五”规划[EB/OL]. (2016-12-16)[2020-02-03]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201612/t20161216_962818.html, 2016-12-16. [2] 周亚中, 付学谦. 农业工程能源互联网发展展望[J]. 电力需求侧管理, 2019, 21(4): 7–11 ZHOU Yazhong, FU Xueqian. Development prospect of energy Internet in agricultural engineering[J]. Power Demand Side Management, 2019, 21(4): 7–11 [3] 国家发展改革委. 全国农村经济发展“十三五”规划[EB/OL]. (2016-10-27)[2020-02-03]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201611/t20161117_962777.html, 2016-10-27. [4] 陈忠华, 高振宇, 陈嘉敏, 等. 考虑不确定性因素的综合能源系统协同规划研究[J]. 电力系统保护与控制, 2021, 49(8): 32–40 CHEN Zhonghua, GAO Zhenyu, CHEN Jiamin, et al. Research on cooperative planning of an integrated energy system considering uncertainty[J]. Power System Protection and Control, 2021, 49(8): 32–40 [5] VAN DER WIEL K, STOOP L P, VAN ZUIJLEN B R H, et al. Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 261–275. [6] FU X, YANG D, GUO Q, et al. Security analysis of a park-level agricultural energy Internet considering agrometeorology and energy meteorology[J]. CSEE Journal of Power and Energy Systems, 2020, 6(3): 743–748. [7] 贾凤伶. 我国能源农业循环经济产业体系研究[J]. 江苏农业科学, 2018, 46(13): 359–362 [8] 潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47(11): 41–47 PAN Xudong, HUANG Yu, TANG Jinrui, et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47(11): 41–47 [9] 潘英. 能源战略下的能源电力发展方向和碳排放问题[J]. 南方能源建设, 2019, 6(3): 32–39 PAN Ying. Energy power development direction and low carbon emission under energy strategy[J]. Southern Energy Construction, 2019, 6(3): 32–39 [10] 冯立恒. 环境因素对户外光伏板发电效率的影响[J]. 电气技术与经济, 2019(5): 28–30 [11] REIMUTH A, LOCHERER V, DANNER M, et al. How do changes in climate and consumption loads affect residential PV coupled battery energy systems?[J]. Energy, 2020, 198: 117339. [12] FU J, NIU J, KANG S Z, et al. Crop production in the Hexi Corridor challenged by future climate change[J]. Journal of Hydrology, 2019, 579: 124197. [13] 王春乙, 张继权, 霍治国, 等. 农业气象灾害风险评估研究进展与展望[J]. 气象学报, 2015, 73(1): 1–19 WANG Chunyi, ZHANG Jiquan, HUO Zhiguo, et al. Prospects and progresses in the research of risk assessment of agro-meteorological disasters[J]. Acta Meteorologica Sinica, 2015, 73(1): 1–19 [14] TEIXEIRA E I, DE RUITER J, AUSSEIL A G, et al. Adapting crop rotations to climate change in regional impact modelling assessments[J]. Science of the Total Environment, 2018, 616/617: 785–795. [15] 崔建云, 董晨娥, 左迎之, 等. 外部环境气象条件对日光温室气象条件的影响[J]. 气象, 2006(3): 101–106 CUI Jianyun, DONG Chen'e, ZUO Yingzhi, et al. The influence of outside meteorological conditions on conditions inside greenhouse[J]. Meteorological, 2006(3): 101–106 [16] 冉昊, 周思彤. 影响农村生物质能源发展的主要问题解析[J]. 环境与发展, 2019, 31(6): 237–238 RAN Hao, ZHOU Sitong. Analysis on the main problems affecting the development of biomass energy in rural areas[J]. Environment and Development, 2019, 31(6): 237–238 [17] 娄喜艳, 丁锦平. 生物质能源发展现状及应用前景[J]. 中国农业文摘-农业工程, 2017, 29(2): 12–14 LOU Xiyan, DING Jinping. Biomass energy development present situation and application prospect[J]. Agricultural Science and Engineering in China, 2017, 29(2): 12–14 [18] 李可. 农村地区秸秆-太阳能-沼气循环利用技术[J]. 农业工程, 2018, 8(6): 71–73 LI Ke. Recycling utilization techndogy of straw, solar energy and biogas in rural areas[J]. Agricultural Engineering, 2018, 8(6): 71–73 [19] Yano A, Cossu M. Energy sustainable greenhouse crop cultivation using photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2019, 109(JUL.): 116–137. [20] BAMBARA J, ATHIENITIS A K. Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding[J]. Renewable Energy, 2019, 131: 1274–1287. [21] JUANG P, KACIRA M. System dynamics of a photovoltaic integrated greenhouse[J]. Acta Horticulturae, 2014(1037): 107–112. [22] IWASAKI Y, AIZAWA M, YOSHIDA C, et al. Developing a new energy-saving, photosynthesis-promoting environmental control system for greenhouse production based on a heat pump with a heat storage system[J]. Journal of Agricultural Meteorology, 2013, 69(2): 81–92. [23] CHAI L L, MA C W, NI J Q. Performance evaluation of ground source heat pump system for greenhouse heating in Northern China[J]. Biosystems Engineering, 2012, 111(1): 107–117. [24] EMMOTT C J M, RÖHR J A, CAMPOY-QUILES M, et al. Organic photovoltaic greenhouses: a unique application for semi-transparent PV?[J]. Energy & Environmental Science, 2015, 8(4): 1317–1328. [25] NTINAS G K, NEUMAIR M, TSADILAS C D, et al. Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions[J]. Journal of Cleaner Production, 2017, 142: 3617–3626. [26] SOULIOTIS M, TRIPANAGNOSTOPOULOS Y, KAVGA A. The use of Fresnel lenses to reduce the ventilation needs of greenhouses[J]. Acta Horticulturae, 2006(719): 107–113. [27] TRYPANAGNOSTOPOULOS G, KAVGA A, SOULIOTIS Μ, et al. Greenhouse performance results for roof installed photovoltaics[J]. Renewable Energy, 2017, 111: 724–731. [28] UREÑA-SÁNCHEZ R, CALLEJÓN-FERRE Á J, PÉREZ-ALONSO J, et al. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels[J]. Scientia Agricola, 2012, 69(4): 233–239. [29] ROCAMORA M C, TRIPANAGNOSTOPOULOS Y. Aspects of pv/t solar system application for ventilation needs in greenhouses[J]. Acta Horticulturae, 2006(719): 239–245. [30] 杨晓亮. 规模化畜牧养殖场沼气发电节能工程技术改造分析[J]. 能源与环保, 2019, 41(6): 73–76 YANG Xiaoliang. Analysis on energy-saving engineering technology transformation of biogas power generation in large-scale livestock farm[J]. China Energy and Environmental Protection, 2019, 41(6): 73–76 [31] 付学谦, 周亚中, 孙宏斌, 等. 园区农业能源互联网: 概念、特征与应用价值[J]. 农业工程学报, 2020, 36(12): 152–161 FU Xueqian, ZHOU Yazhong, SUN Hongbin, et al. Park-level agricultural energy Internet: Concept, characteristic and application value[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 152–161 [32] 刘柯楠, 吴普特, 朱德兰, 等. 太阳能驱动喷灌机组行走动力和光伏功率匹配设计与试验[J]. 农业工程学报, 2017, 33(16): 96–103 LIU Kenan, WU Pute, ZHU Delan, et al. Design and test of driving power and photovoltaic power matching for solar-driven sprinkler irrigation unit[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 96–103 [33] 孙杰. 水上光伏电站应用技术与解决方案[J]. 太阳能, 2017(6): 32–35 [34] 彭澎, 梁龙, 李海龙, 等. 我国设施农业现状、问题与发展建议[J]. 北方园艺, 2019(5): 161–168 PENG Peng, LIANG Long, LI Hailong, et al. Status, deficiency and development suggestions of protected agriculture in China[J]. Northern Horticulture, 2019(5): 161–168 [35] LIU J Y, CHAI Y X, XIANG Y, et al. Clean energy consumption of power systems towards smart agriculture: roadmap, bottlenecks and technologies[J]. CSEE Journal of Power and Energy Systems, 2018, 4(3): 273–282. [36] 江华. 论我国光伏产业的发展优势与劣势[J]. 太阳能, 2019(9): 15–17, 76 JIANG Hua. Advantages and disadvantages of PV industry development in China[J]. Solar Energy, 2019(9): 15–17, 76 [37] WU S. The evolution of rural energy policies in China: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109584. [38] 徐健. 基于光伏发电技术的农业智能化灌溉系统设计[J]. 农机化研究, 2020, 42(7): 241–244 XU Jian. Intelligent irrigation system based on solar photovltaic technology[J]. Journal of Agricultural Mechanization Research, 2020, 42(7): 241–244 [39] 余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统[J]. 农业工程学报, 2016, 32(20): 144–152 YU Guoxiong, WANG Weixing, XIE Jiaxing, et al. Information acquisition and expert decision system in litchi orchard based on Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 144–152 [40] OULD-AMROUCHE S, REKIOUA D, HAMIDAT A. Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential[J]. Applied Energy, 2010, 87(11): 3451–3459. [41] HAN C F, LIU J X, LIANG H W, et al. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater[J]. Journal of Environmental Sciences, 2013, 25(2): 274–279. [42] LIU Y, FANG J N, TONG X Y, et al. Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures[J]. Bioresource Technology, 2019, 293: 122066. [43] 王亚静, 张弛, 高春雨, 等. 我国北方地区沼气工程冬季增温保温技术研究进展与展望[J]. 中国沼气, 2017, 35(3): 93–99 WANG Yajing, ZHANG Chi, GAO Chunyu, et al. Research progress and prospect on heat insulation and temperature increasing technology for biogas project in winter of Northern China[J]. China Biogas, 2017, 35(3): 93–99 [44] CHEN J L, XU F, TAN D P, et al. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model[J]. Applied Energy, 2015, 141: 106–118. [45] WANG W, SHI Y, ZHANG C, et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation[J]. Nature Communications, 2019, 10(1): 3012. [46] FARRELL E, HASSAN M I, TUFA R A, et al. Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture[J]. Applied Energy, 2017, 187: 390–409. [47] 刘乔波, 谢平平, 欧阳金鑫, 等. 基于异质能源多时间尺度互补的动态经济调度策略[J]. 电力自动化设备, 2018, 38(6): 55–64 LIU Qiaobo, XIE Pingping, OUYANG Jinxin, et al. Dynamic economic dispatch strategy based on multi-time scale complementarity of heterogeneous energy sources[J]. Electric Power Automation Equipment, 2018, 38(6): 55–64 [48] VANTHOOR B H E, STANGHELLINI C, VAN HENTEN E J, et al. A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates[J]. Biosystems Engineering, 2011, 110(4): 363–377.
|