中国电力 ›› 2025, Vol. 58 ›› Issue (12): 63-72, 85.DOI: 10.11930/j.issn.1004-9649.202502075

• 协同海量分布式灵活性资源的韧性城市能源系统关键技术 • 上一篇    

考虑温控型负荷特性影响的集群用户超短期负荷预测方法

孟浩1(), 徐飞2(), 符帅1, 孙鹏1, 郝玲2, 刘博宇2, 刘芷维2   

  1. 1. 国网内蒙古东部电力有限公司通辽供电公司,内蒙古 通辽 028000
    2. 新型电力系统运行与控制全国重点实验室(清华大学) 北京 100084
  • 收稿日期:2025-02-08 修回日期:2025-11-17 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    孟浩(1984),硕士,高级工程师,从事配网生产研究工作,E-mail:1490358109@qq.com
    徐飞(1974),通信作者,研究员,从事配电网优化运行、可再生能源消纳提升技术研究,E-mail:xufei@tsinghua.edu.cn
  • 基金资助:
    国网内蒙古东部电力有限公司通辽供电公司科技项目(蒙东农牧区配电网典型负荷特征分析预测建模及平衡调控技术研究,526620240008)。

Ultra-Short-Term Load Forecasting Method for Aggregated Users Considering the Impact of Temperature-Controlled Load Characteristics

MENG Hao1(), XU Fei2(), FU Shuai1, SUN Peng1, HAO Ling2, LIU Boyu2, LIU Zhiwei2   

  1. 1. Tongliao Power Supply Company, State Grid Inner Mongolia East Electric Power Co., Ltd., Tongliao 028000, China
    2. State Key Laboratory of Power System Operation and Control (Tsinghua University), Beijing 100084, China
  • Received:2025-02-08 Revised:2025-11-17 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid East Inner Mongolia Electric Power Co., Ltd. Tongliao Power Supply Company (Research on Typical Load Characteristic Analysis and Prediction Modeling and Balance Control Technology of Distribution Network in Agricultural And Pastoral Areas of Eastern Inner Mongolia, No.526620240008).

摘要:

含高比例温控型负荷的集群用户负荷易受气温变化等因素影响而发生特性突变,使得历史不同时间的负荷特性存在时序分布偏移,导致已有的集群用户负荷预测建模方法因泛化性不足而效果不佳。借鉴迁移学习提取空间维度域不变特征的思路,提出了一种基于时域不变特征建模的集群用户超短期负荷预测方法。由于负荷时序分布发生偏移的周期和各周期的边界通常是未知的,首先,对负荷的时序分布偏移情况进行了量化,将负荷划分为具有显著分布差异的序列,以支撑后续样本间时域共性特征的提取;然后,提出了基于Transformer的时域不变特征提取算法,通过最小化不同分布数据样本间的时序分布差异,提取时域不变特征,进而优化负荷预测建模,提升负荷特性突变场景下的预测精度。最后,基于真实居民负荷数据验证了所提方法的优越性。

关键词: 温控型负荷, 数据时序分布偏移, Transformer模型, 超短期负荷预测, 深度学习

Abstract:

The load of aggregated users with a high proportion of temperature-controlled loads is prone to abrupt in characteristics due to factors such as temperature variations, leading to temporal distribution shifts in load characteristics across different historical periods. This results in poor performance of existing load forecasting modeling methods for aggregated users due to insufficient generalization capability. Drawing on the concept of transfer learning for extracting domain-invariant features in the spatial dimension, an ultra-short-term load forecasting method for aggregated users based on time-domain invariant feature modeling is proposed. Since the cycles of temporal distribution shifts in load data and the boundaries of these cycles are typically unknown, firstly, the temporal distribution shift is quantified, and the load is segmented into sequences with significant distribution differences to support the subsequent extraction of time-domain common features among samples. Then, a Transformer-based time-domain invariant feature extraction algorithm is proposed, which minimizes the temporal distribution differences among data samples with varying distributions to extract time-domain invariant features, thereby optimizing load forecasting modeling and improving prediction accuracy under scenarios of abrupt load characteristic changes. Finally, the superiority of the proposed method is validated using real residential load data.

Key words: temperature-controlled load, data temporal distribution shift, transformer model, ultra-short-term load forecasting, deep learning


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?