中国电力 ›› 2025, Vol. 58 ›› Issue (11): 156-163.DOI: 10.11930/j.issn.1004-9649.202411021
武同心1(
), 纪鑫1,2(
), 杨成月1(
), 陈屹婷1, 杨智伟1
收稿日期:2024-11-06
修回日期:2025-06-20
发布日期:2025-12-01
出版日期:2025-11-28
作者简介:基金资助:
WU Tongxin1(
), JI Xin1,2(
), YANG Chengyue1(
), CHEN Yiting1, YANG Zhiwei1
Received:2024-11-06
Revised:2025-06-20
Online:2025-12-01
Published:2025-11-28
Supported by:摘要:
电力领域中存在大量的中文文本数据,传统文本挖掘方法存在分词难度大、文本特征提取具有局限性、处理文本中的复杂关系时效果不好等问题,严重限制了对电力信息的深度理解与分类。基于此,提出了一种结合文本卷积网络(text convolutional neural networks,TextCNN)与注意力(Attention)机制的电力文本分类模型,对输入层、TextCNN层、第1个注意力层、池化层、第2个注意力层以及输出层进行了分层优化设计,并通过实验对模型进行了验证。结果显示,TextCNN-Attention模型在电力文本数据集上的文本分类准确率达到了96.8%,精确率达到了86.3%,召回率达到了90.3%,综合评价值达到了88.2%,表明TextCNN-Attention模型可有效提升电力文本分类的效率,为深度学习算法在电力文本分类领域的应用提供了经验借鉴。
武同心, 纪鑫, 杨成月, 陈屹婷, 杨智伟. 基于双层注意力机制的电力文本分类模型[J]. 中国电力, 2025, 58(11): 156-163.
WU Tongxin, JI Xin, YANG Chengyue, CHEN Yiting, YANG Zhiwei. A Power Text Classification Model Based on Dual-layer Attention Mechanism[J]. Electric Power, 2025, 58(11): 156-163.
| 电力领域文本 | 类别 | |
| 可改善氢燃料与充电电池的储能新技术 | 氢能与储 能技术 | |
| 电网新能源消纳受阻因素智能辨识方法 | 电力消纳 | |
| 具有用电器分析监测功能的智能供电装置 | 高电压与 智能电器 | |
| 电能质量的监测与分析系统 | 电能质量 | |
| 视觉信息在电力设备检测中的应用 | 电力设备 | |
| “十二五”智能电网投资将接近2万亿元 | 智能电网 | |
| 利用界面临界压力法处理变压器夹件绝缘故障 | 变压器 | |
| 基于“五防”体系的智能变电站二次状态防误研究 | 变电站 | |
| “互联网+”视角下智能配电网运维技术应用分析 | 配电网 | |
| 电力系统故障仿真软件分析 | 电力系统 |
表 1 电力领域文本数据集样例
Table 1 Example of text dataset in the electric power field
| 电力领域文本 | 类别 | |
| 可改善氢燃料与充电电池的储能新技术 | 氢能与储 能技术 | |
| 电网新能源消纳受阻因素智能辨识方法 | 电力消纳 | |
| 具有用电器分析监测功能的智能供电装置 | 高电压与 智能电器 | |
| 电能质量的监测与分析系统 | 电能质量 | |
| 视觉信息在电力设备检测中的应用 | 电力设备 | |
| “十二五”智能电网投资将接近2万亿元 | 智能电网 | |
| 利用界面临界压力法处理变压器夹件绝缘故障 | 变压器 | |
| 基于“五防”体系的智能变电站二次状态防误研究 | 变电站 | |
| “互联网+”视角下智能配电网运维技术应用分析 | 配电网 | |
| 电力系统故障仿真软件分析 | 电力系统 |
| 参数 | 值 | |
| word_num(单词数) | 50 | |
| embedding_dim(词向量维度) | 300 | |
| vocab_size(词表大小) | ||
| filter_size(卷积核大小) | 2,3,4 | |
| filter_num(卷积核数量) | 64 | |
| learning_rate(学习率) | 1e—3 | |
| epochs(迭代次数) | 5 | |
| dorpout(随机失活) | 0.5 | |
| batch size(样本数) | 128 |
表 2 TextCNN-Attention 模型主要参数
Table 2 Main parameters of TextCNN-Attention model
| 参数 | 值 | |
| word_num(单词数) | 50 | |
| embedding_dim(词向量维度) | 300 | |
| vocab_size(词表大小) | ||
| filter_size(卷积核大小) | 2,3,4 | |
| filter_num(卷积核数量) | 64 | |
| learning_rate(学习率) | 1e—3 | |
| epochs(迭代次数) | 5 | |
| dorpout(随机失活) | 0.5 | |
| batch size(样本数) | 128 |
| 自定义电力文本 | 分类结果 | |
| 浅谈电力系统企业文化的建设 | 电力系统 | |
| 智能变电站网络通信测试方法研究 | 变电站 | |
| 供电系统的电能质量与无功补偿 | 电能质量 | |
| 电网高比例消纳风电运行机制研究 | 电力消纳 | |
| 功能性纳米材料的制备及其性质研究 | 氢能与储能技术 |
表 3 自定义电力文本分类
Table 3 Customized power text classification
| 自定义电力文本 | 分类结果 | |
| 浅谈电力系统企业文化的建设 | 电力系统 | |
| 智能变电站网络通信测试方法研究 | 变电站 | |
| 供电系统的电能质量与无功补偿 | 电能质量 | |
| 电网高比例消纳风电运行机制研究 | 电力消纳 | |
| 功能性纳米材料的制备及其性质研究 | 氢能与储能技术 |
| 模型 | 准确率 | 精确率 | 召回率 | F1 | ||||
| ML-NB | 86.4 | 83.2 | 82.1 | 83.6 | ||||
| TextCNN | 94.5 | 84.2 | 87.7 | 86.9 | ||||
| TextCNN-Attention | 96.8 | 86.3 | 90.3 | 88.2 |
表 4 实验结果对比
Table 4 Comparison of experimental results 单位:%
| 模型 | 准确率 | 精确率 | 召回率 | F1 | ||||
| ML-NB | 86.4 | 83.2 | 82.1 | 83.6 | ||||
| TextCNN | 94.5 | 84.2 | 87.7 | 86.9 | ||||
| TextCNN-Attention | 96.8 | 86.3 | 90.3 | 88.2 |
| 1 |
杨春霞, 马文文, 徐奔, 等. 融合标签信息的分层图注意力网络文本分类模型[J]. 计算机工程与科学, 2023, 45 (11): 2018- 2026.
DOI |
|
YANG Chunxia, MA Wenwen, XU Ben, et al. A hierarchical graph attention network text classification model that integrates label information[J]. Computer Engineering & Science, 2023, 45 (11): 2018- 2026.
DOI |
|
| 2 |
周凯, 焦龄霄, 胡志坚, 等. 基于注意力机制的CNN-BiLSTM操作票自动校核方法[J]. 武汉大学学报(工学版), 2023, 56 (9): 1114- 1123.
DOI |
|
ZHOU Kai, JIAO Lingxiao, HU Zhijian, et al. Automatic verification method of operation ticket based on attention mechanism of CNN-BiLSTM[J]. Engineering Journal of Wuhan University, 2023, 56 (9): 1114- 1123.
DOI |
|
| 3 |
杨茜. 基于Bi-LSTM和图注意力网络的多标签文本分类算法[J]. 计算机应用与软件, 2023, 40 (9): 145- 150.
DOI |
|
YANG Xi. Multi label text classification algorithm based on BI-LSTM and graph attention network[J]. Computer Applications and Software, 2023, 40 (9): 145- 150.
DOI |
|
| 4 |
张爱军, 刘会强, 慕腾, 等. 计及经济-低碳时空匹配的高比例新能源电力系统扩展规划[J]. 智慧电力, 2024, 52 (11): 72- 80.
DOI |
|
ZHANG Aijun, LIU Huiqiang, MU Teng, et al. Expansion planning for high proportion of renewable energy power system considering economy-low carbon spatiotemporal matching[J]. Smart Power, 2024, 52 (11): 72- 80.
DOI |
|
| 5 |
郭森, 王宇慧, 周劲松, 等. 数字经济发展对我国省级电力行业碳排放影响研究[J]. 智慧电力, 2024, 52 (11): 32- 39.
DOI |
|
GUO Sen, WANG Yuhui, ZHOU Jinsong, et al. Impact of digital economy development on carbon emissions in China's provincial electric power industry[J]. Smart Power, 2024, 52 (11): 32- 39.
DOI |
|
| 6 |
侯慧, 吴文杰, 魏瑞增, 等. 基于注意力机制的CNN-LSTM-XGBoost台风暴雨电力气象混合预测模型[J]. 智慧电力, 2024, 52 (10): 96- 102.
DOI |
|
HOU Hui, WU Wenjie, WEI Ruizeng, et al. Attention mechanism based CNN-LSTM-XGBoost electric power meteorological hybrid forecasting model of typhoon rainstorm[J]. Smart Power, 2024, 52 (10): 96- 102.
DOI |
|
| 7 |
庞清乐, 韩松易, 周泰, 等. 基于ASRUKF和IMC算法的电力信息物理系统虚假数据注入攻击检测[J]. 智慧电力, 2024, 52 (7): 111- 118.
DOI |
|
PANG Qingle, HAN Songyi, ZHOU Tai, et al. False data injection attack detection of cyber-physical power system based on ASRUKF and IMC algorithms[J]. Smart Power, 2024, 52 (7): 111- 118.
DOI |
|
| 8 |
程钢, 陈秀明, 于翔. 基于TextCNN融合模型的离散情感分析[J]. 科学技术创新, 2023 (21): 124- 127.
DOI |
|
CHENG Gang, CHEN Xiuming, YU Xiang. Discrete emotion analysis based on TextCNN-BERT fusion model[J]. Scientific and Technological Innovation, 2023 (21): 124- 127.
DOI |
|
| 9 |
胡容波, 郭诚, 王锦浩, 等. 基于深度学习的自然资源政策文本分类研究[J]. 高技术通讯, 2023, 33 (7): 692- 703.
DOI |
|
HU Rongbo, GUO Cheng, WANG Jinhao, et al. Research on classification of natural resources policy text based on deep learning[J]. Chinese High Technology Letters, 2023, 33 (7): 692- 703.
DOI |
|
| 10 |
彭俊利, 王少泫, 陆正球, 等. 基于LDA-TF-IDF和Word2Vec文档表示[J]. 浙江纺织服装职业技术学院学报, 2023, 22 (2): 91- 96.
DOI |
|
PENG Junli, WANG Shaoxuan, LU Zhengqiu, et al. Document representation based on LDA-TF-IDF and Word2Vec[J]. Journal of Zhejiang Fashion Institute of Technology, 2023, 22 (2): 91- 96.
DOI |
|
| 11 | 刘佳欣. 基于深度学习的情感文本分类研究[D]. 兰州: 兰州理工大学, 2023. |
| LIU Jiaxin. Research on sentiment text classification based on deep learning[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
| 12 | 王振, 杨国锋, 陈天池. 基于深度学习的长文本分类[J]. 中国新通信, 2019, 21 (6): 86- 88. |
| 13 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507.
DOI |
| 14 |
贾澎涛, 孙炜. 基于深度学习的文本分类综述[J]. 计算机与现代化, 2021 (7): 29- 37.
DOI |
|
JIA Pengtao, SUN Wei. A survey of text classification based on deep learning[J]. Computer and Modernization, 2021 (7): 29- 37.
DOI |
|
| 15 |
彭清泉, 王丹. 基于深度学习的医疗文本分类模型[J]. 电子设计工程, 2023, 31 (5): 51- 54.
DOI |
|
PENG Qingquan, WANG Dan. Medical text classification model based on deep learning[J]. Electronic Design Engineering, 2023, 31 (5): 51- 54.
DOI |
|
| 16 |
邵栩辉. 基于深度学习的训练词向量和文本分类[J]. 电子制作, 2020 (20): 80- 82,100.
DOI |
|
SHAO Xuhui. Training word vectors and text classification based on deep learning[J]. Practical Electronics, 2020 (20): 80- 82,100.
DOI |
|
| 17 |
吕淑宝, 王明月, 翟祥, 等. 一种深度学习的信息文本分类算法[J]. 哈尔滨理工大学学报, 2017, 22 (2): 105- 111.
DOI |
|
LYU Shubao, WANG Mingyue, ZHAI Xiang, et al. AN information text classification algorithm based on DBN[J]. Journal of Harbin University of Science and Technology, 2017, 22 (2): 105- 111.
DOI |
|
| 18 | 祝亮. 基于CNN深度学习的自媒体文本分类方法的研究[J]. 电脑知识与技术, 2021, 17 (21): 97- 100. |
| ZHU Liang. Research on we-media text classification method based on CNN deep learning[J]. Computer Knowledge and Technology, 2021, 17 (21): 97- 100. | |
| 19 |
徐建飞, 吴跃成. 基于BERT-BiLSTM-CNN模型的新闻文本分类研究[J]. 软件工程, 2023, 26 (6): 11- 15.
DOI |
|
XU Jianfei, WU Yuecheng. Research on news text classification based on BERT-BiLSTM-CNN[J]. Software Engineering, 2023, 26 (6): 11- 15.
DOI |
|
| 20 |
YANG X Z, PENG G J, ZHANG D N, et al. PowerDetector: malicious PowerShell script family classification based on multi-modal semantic fusion and deep learning[J]. China Communications, 2023, 20 (11): 202- 224.
DOI |
| 21 |
杨秀璋, 武帅, 张苗, 等. 基于TextCNN和Attention的微博舆情事件情感分析[J]. 信息技术与信息化, 2021 (7): 41- 46.
DOI |
|
YANG Xiuzhang, WU Shuai, ZHANG Miao, et al. Emotional analysis of microblog public opinion events based on TextCNN and Attention[J]. Information Technology and Informatization, 2021 (7): 41- 46.
DOI |
|
| 22 |
ZHOU X W, WANG H F, LI S S, et al. Complex traffic scene image classification based on sparse optimization boundary semantics deep learning[J]. Wuhan University Journal of Natural Sciences, 2023, 28 (2): 150- 162.
DOI |
| 23 |
齐佳琪, 迟呈英, 战学刚. ERNIE-CNN文本分类模型[J]. 辽宁科技大学学报, 2021, 44 (1): 56- 61.
DOI |
|
QI Jiaqi, CHI Chengying, ZHAN Xuegang. ERNIE-CNN text classification model[J]. Journal of University of Science and Technology Liaoning, 2021, 44 (1): 56- 61.
DOI |
|
| 24 |
王宣军, 于虹, 祁兵, 等. 基于注意力机制的混合神经网络电力设备缺陷文本挖掘方法[J]. 电力信息与通信技术, 2023, 21 (9): 44- 51.
DOI |
|
WANG Xuanjun, YU Hong, QI Bing, et al. Hybrid neural network text mining method for power equipment defects based on attention mechanism[J]. Electric Power Information and Communication Technology, 2023, 21 (9): 44- 51.
DOI |
|
| 25 |
HU J X, HU W H, CHEN J J, et al. Fault location and classification for distribution systems based on deep graph learning methods[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (1): 35- 51.
DOI |
| 26 |
SALAMA W M, ALY M H. Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images[J]. Journal of Electronic Science and Technology, 2022, 20 (3): 100161.
DOI |
| 27 | 姜炎宏. 基于深度学习的中文文本多标签分类研究[D]. 鞍山: 辽宁科技大学, 2020. |
| JIANG Yanhong. Research on Chinese text multi-label classification based on deep learning[D]. Anshan: University of Science and Technology Liaoning, 2020. | |
| 28 |
曹湘, 李誉坤, 钱叶, 等. 基于混合神经网络的电力短文本分类方法研究[J]. 计算机与数字工程, 2019, 47 (5): 1145- 1150.
DOI |
|
CAO Xiang, LI Yukun, QIAN Ye, et al. Short text classification of electric power based on hybrid neural network[J]. Computer & Digital Engineering, 2019, 47 (5): 1145- 1150.
DOI |
|
| 29 |
李天昊, 霍其润, 闫跃, 等. 融合ERNIE和注意力机制的中文关系抽取模型[J]. 小型微型计算机系统, 2022, 43 (6): 1226- 1231.
DOI |
|
LI Tianhao, HUO Qirun, YAN Yue, et al. Chinese relation extraction model based on ERNIE and attention mechanism[J]. Journal of Chinese Computer Systems, 2022, 43 (6): 1226- 1231.
DOI |
|
| 30 | 宇文梦柯. 基于领域知识的电网设备故障缺陷案例分析方法的研究与实现[D]. 北京: 北京邮电大学, 2019. |
| YUWEN Mengke. Research and implementation of grid equipment defect case analysis based on field knowledge[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
| 31 |
王丽鹏, 张鹏云, 和志强. 基于特征词匹配的政策文本分类算法研究与实现[J]. 河北省科学院学报, 2017, 34 (3): 1- 6.
DOI |
|
WANG Lipeng, ZHANG Pengyun, HE Zhiqiang. Research and implementation of text categorization algorithm based on feature word matching[J]. Journal of the Hebei Academy of Sciences, 2017, 34 (3): 1- 6.
DOI |
| [1] | 李科, 潘庭龙, 许德智. 基于MSCNN-BiGRU-Attention的短期电力负荷预测[J]. 中国电力, 2025, 58(6): 10-18. |
| [2] | 步雨洛, 吴俊勇, 史法顺, 季佳伸. 考虑新能源的暂态功角与电压稳定一体化评估[J]. 中国电力, 2025, 58(6): 122-136. |
| [3] | 李鹏, 祖文静, 刘一欣, 田春筝, 郝元钊, 李慧璇. 基于不完全量测数据的配电网状态估计方法[J]. 中国电力, 2025, 58(5): 1-10. |
| [4] | 沈鑫, 王钢, 赵毅涛, 骆钊, 李钊, 杨晓华. 融合SENet注意力机制和GA-CNN的非侵入式负荷识别方法[J]. 中国电力, 2025, 58(5): 33-42. |
| [5] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
| [6] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
| [7] | 高岩, 吴汉斌, 张纪欣, 张华铭, 张沛. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57(4): 100-110. |
| [8] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
| [9] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
| [10] | 王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157. |
| [11] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
| [12] | 刘东, 张越, 皮俊波, 单连飞, 刘赫, 宋鹏程, 姜涛. 面向电网调控信息智能检索的知识图谱构建及应用[J]. 中国电力, 2023, 56(7): 78-84. |
| [13] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
| [14] | 张鑫, 叶俊杰, 崔瑶, 黄鑫, 仲林林. 基于语义信息距离解耦的变电运维多类别缺陷图像检测[J]. 中国电力, 2023, 56(6): 209-218. |
| [15] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编