中国电力 ›› 2025, Vol. 58 ›› Issue (6): 19-32.DOI: 10.11930/j.issn.1004-9649.202410086

• 基于人工智能驱动的低碳高品质新型配电系统 • 上一篇    下一篇

基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测

于多1(), 曹燚2(), 王海荣1(), 赵翱东1, 曹倩3   

  1. 1. 无锡职业技术学院 控制工程学院,江苏 无锡 214000
    2. 无锡学院 物联网工程学院,江苏 无锡 214105
    3. 南京信息工程大学 自动化学院,江苏 南京 210000
  • 收稿日期:2024-10-28 发布日期:2025-06-30 出版日期:2025-06-28
  • 作者简介:
    于多(1984),女,通信作者,高级工程师,从事智能终端与物联网应用以及用电负荷预测研究,E-mail:yduo20211249605@126.com
    曹燚(1994),男,讲师,从事计算机视觉、车联网安全等研究,E-mail:caoyi@cwxu.edu.cn(第二十七届中国科协年会学术论文“配微储协同的低碳高品质新型配电系统”专题)
  • 基金资助:
    国家自然科学基金资助项目(42305158);第二批国家级职业教育教师教学创新团队课题研究项目(ZI2021030103);江苏省高等教育教改研究立项重点课题(2021JSJG197)。

Short-term Load Forecasting Based on a Combined ICEEMDAN-PE and IDBO-Informer Model

YU Duo1(), CAO Yi2(), WANG Hairong1(), ZHAO Aodong1, CAO Qian3   

  1. 1. School of Control Engineering, Wuxi Institute of Technology, Wuxi 214000, China
    2. School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China
    3. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210000, China
  • Received:2024-10-28 Online:2025-06-30 Published:2025-06-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.42305158); The Second Batch of National Vocational Education Teachers' Teaching Innovation Team Research Project (No.ZI2021030103); Key Project of Jiangsu Higher Education Reform Research Project (No.2021JSJG197).

摘要:

针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。

关键词: 负荷预测, ICEEMDAN, 改进蜣螂优化算法, Informer

Abstract:

To address the problems of insufficient noise processing, limited feature extraction ability and complex model training when using traditional methods to deal with complex load data, an innovative forecasting model based on a combined ICEEMDAN-PE and IDBO-Informer is proposed. Firstly, the raw load data were preprocessed using wavelet soft-threshold denoising algorithm to reduce noise interference. Secondly, ICEEMDAN was used for multi-scale decomposition of load data to precisely characterize load features, and the permutation entropy was used to evaluate the component complexity. Finally, an improved Dung Beetle Optimizer (IDBO) was proposed by synergistically integrating chaotic and opposition-based learning strategies for population initialization, incorporating adaptive step size, convex lens opposition imaging, and stochastic differential mutation strategies. This approach optimizes hyperparameters of the Informer forecasting model, significantly enhancing computational efficiency and prediction accuracy. The experimental results show that the model performs well in short-term load forecasting, with MAE of 81.3 MW (the original load data range is about 500 MW to 1500 MW), RMSE of 109.2 MW and R2 score of 0.991, which is much better than the traditional method, and fully verifies the innovation and superiority of the model.

Key words: load forecasting, ICEEMDAN, improved dung beetle optimizer algorithm, Informer


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?