中国电力 ›› 2025, Vol. 58 ›› Issue (6): 19-32.DOI: 10.11930/j.issn.1004-9649.202410086
• 基于人工智能驱动的低碳高品质新型配电系统 • 上一篇 下一篇
于多1(), 曹燚2(
), 王海荣1(
), 赵翱东1, 曹倩3
收稿日期:
2024-10-28
发布日期:
2025-06-30
出版日期:
2025-06-28
作者简介:
基金资助:
YU Duo1(), CAO Yi2(
), WANG Hairong1(
), ZHAO Aodong1, CAO Qian3
Received:
2024-10-28
Online:
2025-06-30
Published:
2025-06-28
Supported by:
摘要:
针对传统方法在处理复杂负荷数据时存在的噪声处理不足、特征提取能力有限及模型训练复杂等问题,提出了一种基于改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)-置换熵(permutation entropy,PE)和改进蜣螂优化算法(improved dung beetle optimizer,IDBO)-Informer的创新组合预测模型。首先,该模型通过小波软阈值去噪算法预处理原始负荷数据,减少噪声干扰。其次,利用ICEEMDAN多尺度分解负荷数据,精准捕捉负荷特征,并采用置换熵评估分量复杂度。最后,对蜣螂优化算法进行改进,通过融合混沌与逆向学习策略进行种群初始化,引入自适应步长与凸透镜逆成像策略及随机差异变异策略,优化Informer预测模型参数,显著提升预测效率与准确性。实验结果表明,该模型在短期负荷预测中表现出色,平均绝对误差为81.3 MW(原始负荷数据范围约为500 MW至1 500 MW),均方根误差为109.2 MW,拟合系数评分为0.991,远优于传统方法,充分验证了模型的创新性和优越性。
于多, 曹燚, 王海荣, 赵翱东, 曹倩. 基于ICEEMDAN-PE和IDBO-Informer组合模型的短期负荷预测[J]. 中国电力, 2025, 58(6): 19-32.
YU Duo, CAO Yi, WANG Hairong, ZHAO Aodong, CAO Qian. Short-term Load Forecasting Based on a Combined ICEEMDAN-PE and IDBO-Informer Model[J]. Electric Power, 2025, 58(6): 19-32.
算法 | 参数设置 | |
PSO | C1=C2=2,w1=0.8 | |
SSA | D=0.3,T=0.1,R2=0.6 | |
GWO | fi=2,A=0.1,w2=0.5 | |
DBO | K1=0.1,S1=0.5 | |
IDBO | K2=0.1,S2=0.5 |
表 1 各优化算法的参数设置
Table 1 Parameter setting for various optimization algorithms
算法 | 参数设置 | |
PSO | C1=C2=2,w1=0.8 | |
SSA | D=0.3,T=0.1,R2=0.6 | |
GWO | fi=2,A=0.1,w2=0.5 | |
DBO | K1=0.1,S1=0.5 | |
IDBO | K2=0.1,S2=0.5 |
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f1 | PSO | f4 | PSO | |||||||||||||||||||
SSA | 0 | SSA | 0 | |||||||||||||||||||
GWO | GWO | |||||||||||||||||||||
DBO | DBO | |||||||||||||||||||||
IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f5 | PSO | f11 | PSO | 0 | ||||||||||||||||||
SSA | SSA | |||||||||||||||||||||
GWO | GWO | |||||||||||||||||||||
DBO | DBO | |||||||||||||||||||||
IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f15 | PSO | 0 | 0 | 0 | 0 | f20 | PSO | |||||||||||||||
SSA | 0 | 0 | 0 | 0 | SSA | 0 | ||||||||||||||||
GWO | GWO | 0 | 0 | |||||||||||||||||||
DBO | 0 | DBO | 0 | |||||||||||||||||||
IDBO | 0 | IDBO | 0 | 0 | 0 | 0 |
表 2 测试结果
Table 2 Test results
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f1 | PSO | f4 | PSO | |||||||||||||||||||
SSA | 0 | SSA | 0 | |||||||||||||||||||
GWO | GWO | |||||||||||||||||||||
DBO | DBO | |||||||||||||||||||||
IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f5 | PSO | f11 | PSO | 0 | ||||||||||||||||||
SSA | SSA | |||||||||||||||||||||
GWO | GWO | |||||||||||||||||||||
DBO | DBO | |||||||||||||||||||||
IDBO | 0 | 0 | 0 | 0 | IDBO | 0 | 0 | 0 | 0 | |||||||||||||
测试 函数 | 算法 | BV | WV | MV | SD | 测试 函数 | 算法 | BV | WV | MV | SD | |||||||||||
f15 | PSO | 0 | 0 | 0 | 0 | f20 | PSO | |||||||||||||||
SSA | 0 | 0 | 0 | 0 | SSA | 0 | ||||||||||||||||
GWO | GWO | 0 | 0 | |||||||||||||||||||
DBO | 0 | DBO | 0 | |||||||||||||||||||
IDBO | 0 | IDBO | 0 | 0 | 0 | 0 |
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | ICEEMDAN-PE-IDBO-SVR | 265.7 | 296.8 | 0.947 | ||||
ICEEMDAN-PE-IDBO-LSTM | 190.5 | 226.3 | 0.965 | |||||
ICEEMDAN-PE-IDBO-GRU | 140.8 | 169.1 | 0.972 | |||||
ICEEMDAN-PE-IDBO-Transformer | 90.8 | 121.4 | 0.980 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | ICEEMDAN-PE-IDBO-SVR | 0.941 | ||||||
ICEEMDAN-PE-IDBO-LSTM | 694.7 | 877.2 | 0.962 | |||||
ICEEMDAN-PE-IDBO-GRU | 557.6 | 706.6 | 0.979 | |||||
ICEEMDAN-PE-IDBO-Transformer | 493.3 | 585.8 | 0.985 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
表 3 不同模型对比实验评价指标
Table 3 Evaluation indicators for comparative experiments of different models
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | ICEEMDAN-PE-IDBO-SVR | 265.7 | 296.8 | 0.947 | ||||
ICEEMDAN-PE-IDBO-LSTM | 190.5 | 226.3 | 0.965 | |||||
ICEEMDAN-PE-IDBO-GRU | 140.8 | 169.1 | 0.972 | |||||
ICEEMDAN-PE-IDBO-Transformer | 90.8 | 121.4 | 0.980 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | ICEEMDAN-PE-IDBO-SVR | 0.941 | ||||||
ICEEMDAN-PE-IDBO-LSTM | 694.7 | 877.2 | 0.962 | |||||
ICEEMDAN-PE-IDBO-GRU | 557.6 | 706.6 | 0.979 | |||||
ICEEMDAN-PE-IDBO-Transformer | 493.3 | 585.8 | 0.985 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | ICEEMDAN-PE-PSO-Informer | 138.7 | 169.9 | 0.974 | ||||
ICEEMDAN-PE-GSA-Informer | 136.1 | 167.8 | 0.975 | |||||
ICEEMDAN-PE-GWO-Informer | 133.2 | 161.4 | 0.979 | |||||
ICEEMDAN-PE-BOA-Informer | 89.2 | 119.8 | 0.983 | |||||
ICEEMDAN-PE-DBO-Informer | 87.8 | 117.9 | 0.985 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | ICEEMDAN-PE-PSO-Informer | 568.7 | 726.3 | 0.977 | ||||
ICEEMDAN-PE-GSA-Informer | 511.2 | 603.4 | 0.981 | |||||
ICEEMDAN-PE-GWO-Informer | 492.4 | 585.2 | 0.984 | |||||
ICEEMDAN-PE-BOA-Informer | 391.2 | 563.5 | 0.989 | |||||
ICEEMDAN-PE-DBO-Informer | 373.9 | 418.8 | 0.992 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
表 4 不同优化算法的评价指标
Table 4 Evaluation indicators for different optimization algorithms
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | ICEEMDAN-PE-PSO-Informer | 138.7 | 169.9 | 0.974 | ||||
ICEEMDAN-PE-GSA-Informer | 136.1 | 167.8 | 0.975 | |||||
ICEEMDAN-PE-GWO-Informer | 133.2 | 161.4 | 0.979 | |||||
ICEEMDAN-PE-BOA-Informer | 89.2 | 119.8 | 0.983 | |||||
ICEEMDAN-PE-DBO-Informer | 87.8 | 117.9 | 0.985 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | ICEEMDAN-PE-PSO-Informer | 568.7 | 726.3 | 0.977 | ||||
ICEEMDAN-PE-GSA-Informer | 511.2 | 603.4 | 0.981 | |||||
ICEEMDAN-PE-GWO-Informer | 492.4 | 585.2 | 0.984 | |||||
ICEEMDAN-PE-BOA-Informer | 391.2 | 563.5 | 0.989 | |||||
ICEEMDAN-PE-DBO-Informer | 373.9 | 418.8 | 0.992 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | EMD-PE-IDBO-Informer | 272.6 | 310.7 | 0.934 | ||||
EEMD-PE-IDBO-Informer | 236.3 | 279.2 | 0.956 | |||||
CEEMD-PE-IDBO-Informer | 187.3 | 219.6 | 0.969 | |||||
CEEMDAN-PE-IDBO-Informer | 146.5 | 186.8 | 0.971 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | EMD-PE-IDBO-Informer | 0.933 | ||||||
EEMD-PE-IDBO-Informer | 0.948 | |||||||
CEEMD-PE-IDBO-Informer | 646.7 | 796.2 | 0.967 | |||||
CEEMDAN-PE-IDBO-Informer | 541.2 | 715.4 | 0.978 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
表 5 不同模态分解方法的评价指标
Table 5 Evaluation indicators for different modal decomposition methods
数据集 | 模型 | MAE/ MW | RMSE/ MW | R2 | ||||
一区 | EMD-PE-IDBO-Informer | 272.6 | 310.7 | 0.934 | ||||
EEMD-PE-IDBO-Informer | 236.3 | 279.2 | 0.956 | |||||
CEEMD-PE-IDBO-Informer | 187.3 | 219.6 | 0.969 | |||||
CEEMDAN-PE-IDBO-Informer | 146.5 | 186.8 | 0.971 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | EMD-PE-IDBO-Informer | 0.933 | ||||||
EEMD-PE-IDBO-Informer | 0.948 | |||||||
CEEMD-PE-IDBO-Informer | 646.7 | 796.2 | 0.967 | |||||
CEEMDAN-PE-IDBO-Informer | 541.2 | 715.4 | 0.978 | |||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
数据集 | 模型 | MAE/MW | RMSE/MW | R2 | ||||
一区 | no-WSTD | 267.6 | 298.2 | 0.944 | ||||
no-ICEEMDAN | 301.3 | 387.7 | 0.916 | |||||
no-PE | 286.4 | 353.1 | 0.939 | |||||
no-IDBO | 346.8 | 452.4 | 0.901 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | no-WSTD | 0.946 | ||||||
no-ICEEMDAN | 0.918 | |||||||
no-PE | 0.937 | |||||||
no-IDBO | 0.908 | |||||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
表 6 在2个数据集上的消融实验的评价指标
Table 6 Evaluation indicators for ablation experiments on two datasets
数据集 | 模型 | MAE/MW | RMSE/MW | R2 | ||||
一区 | no-WSTD | 267.6 | 298.2 | 0.944 | ||||
no-ICEEMDAN | 301.3 | 387.7 | 0.916 | |||||
no-PE | 286.4 | 353.1 | 0.939 | |||||
no-IDBO | 346.8 | 452.4 | 0.901 | |||||
ICEEMDAN-PE-IDBO-Informer | 81.3 | 109.2 | 0.991 | |||||
二区 | no-WSTD | 0.946 | ||||||
no-ICEEMDAN | 0.918 | |||||||
no-PE | 0.937 | |||||||
no-IDBO | 0.908 | |||||||
ICEEMDAN-PE-IDBO-Informer | 331.8 | 384.1 | 0.995 |
1 | 杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50 (13): 126- 133. |
YANG Haizhu, TIAN Fuming, ZHANG Peng, et al. Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power System Protection and Control, 2022, 50 (13): 126- 133. | |
2 | 戴浩男, 张辰灏, 甄钊, 等. 基于时空特征聚类和双层动态图卷积网络建模的短期净负荷预测[J]. 高电压技术, 2024, 50 (9): 3914- 3923. |
DAI Haonan, ZHANG Chenhao, ZHEN Zhao, et al. Short-term net load forecasting based on temporal-spatial feature clustering and two-layer dynamic graph convolutional network modeling[J]. High Voltage Engineering, 2024, 50 (9): 3914- 3923. | |
3 | 孟衡, 张涛, 王金, 等. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法[J]. 电网技术, 2024, 48 (10): 4297- 4311. |
MENG Heng, ZHANG Tao, WANG Jin, et al. Multi-node short-term power load forecasting method based on multi-scale spatiotemporal graph convolution network and transformer[J]. Power System Technology, 2024, 48 (10): 4297- 4311. | |
4 | 范明康, 张怡, 康健, 等. 基于模糊聚类-马尔可夫链的换电站负荷预测模型[J]. 电力建设, 2023, 44 (10): 63- 71. |
FAN Mingkang, ZHANG Yi, KANG Jian, et al. Fuzzy clustering-markov chain based load forecasting modeling for battery-swap stations[J]. Electric Power Construction, 2023, 44 (10): 63- 71. | |
5 | YAMASAKI M, FREIRE R Z, SEMAN L O, et al. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting[J]. International Journal of Electrical Power & Energy Systems, 2024, 155, 109579. |
6 |
WEI N, YIN C, YIN L H, et al. Short-term load forecasting based on WM algorithm and transfer learning model[J]. Applied Energy, 2024, 353, 122087.
DOI |
7 | 王晨, 李又轩, 吴其琦, 等. 基于SVM-STL-LSTM的区域短期电力负荷预测研究[J]. 水电能源科学, 2024, 42 (4): 215- 218. |
WANG Chen, LI Youxuan, WU Qiqi, et al. Research on regional short-term load forecasting based on SVM-STL-LSTM[J]. Water Resources and Power, 2024, 42 (4): 215- 218. | |
8 | 王永利, 刘泽强, 董焕然, 等. 基于VMD-CSO-RF的综合能源系统短期负荷预测[J/OL]. 华北电力大学学报(自然科学版), 2024: 1–10. [2024-10-04]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240314.1850.002.html. |
WANG Yongli, LIU Zeqiang, DONG Huanran, et al. Short-term load forecasting of integrated energy systems based on VMD-CSO-RF [J/OL]. Journal of North China Electric Power University(Natural science edition), 1–10[2024-10-04]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240314.1850.002.html. | |
9 |
ZHANG T R, HUANG Y P, LIAO H, et al. A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network[J]. Applied Energy, 2023, 351, 121768.
DOI |
10 | 李甲祎, 赵兵, 刘宣, 等. 基于DWT-Informer的台区短期负荷预测[J]. 电测与仪表, 2024, 61 (3): 160- 166, 191. |
LI Jiayi, ZHAO Bing, LIU Xuan, et al. Short-term substation load forecasting based on DWT-Informer model[J]. Electrical Measurement & Instrumentation, 2024, 61 (3): 160- 166, 191. | |
11 |
ABUMOHSEN M, OWDA A Y, OWDA M. Electrical load forecasting using LSTM, GRU, and RNN algorithms[J]. Energies, 2023, 16 (5): 2283.
DOI |
12 | 茹瑶, 赵永宁, 叶林, 等. 超短期LSTM风电功率预测模型的混合专家模块化代理解释方法[J]. 电力建设, 2024, 45 (11): 114- 124. |
RU Yao, ZHAO Yongning, YE Lin, et al. Modular surrogate interpretation method based on decision tree mixture of experts for ultra-short-term LSTM wind power forecasting model[J]. Electric Power Construction, 2024, 45 (11): 114- 124. | |
13 | 侯健敏, 孟莹, 李志, 等. 基于综合相关性指标与SA-BiGRU的综合能源系统多元负荷预测[J]. 电力建设, 2024, 45 (5): 118- 130. |
HOU Jianmin, MENG Ying, LI Zhi, et al. Multi-energy load forecasting in integrated energy systems based on comprehensive correlation index and SA-BiGRU network[J]. Electric Power Construction, 2024, 45 (5): 118- 130. | |
14 | 吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57 (6): 131- 140. |
WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57 (6): 131- 140. | |
15 |
JALALIFAR R, DELAVARM R, GHADERI S F. SAC-ConvLSTM: a novel spatio-temporal deep learning-based approach for a short term power load forecasting[J]. Expert Systems with Applications, 2024, 237, 121487.
DOI |
16 |
MOUNIR N, OUADI H, JRHILIFA I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system[J]. Energy and Buildings, 2023, 288, 113022.
DOI |
17 | WIDIANTO A J, ADYTIA D, ADITYA I A. Feature modelling for electricity load forecasting using hybrid EEMD-BiLSTM with spatially correlated weather data[J]. International Journal of Intelligent Engineering & Systems, 2024, 17 (6): 1193. |
18 | ZHENG G Q, KONG L R, SU Z E, et al. Approach for short-term power load prediction utilizing the ICEEMDAN–LSTM–TCN–bagging model[J]. Journal of Electrical Engineering & Technology, 2025, 20 (1): 231- 243. |
19 | 杨国华, 祁鑫, 贾睿, 等. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57 (2): 55- 61. |
YANG Guohua, QI Xin, JIA Rui, et al. Short-term wind power forecast based on CNN&LSTM-GRU model integrated with CEEMD-SE algorithm[J]. Electric Power, 2024, 57 (2): 55- 61. | |
20 |
SHI Y F, WANG B, YU Y W, et al. Robust anomaly detection for multivariate time series through temporal GCNs and attention-based VAE[J]. Knowledge-Based Systems, 2023, 275, 110725.
DOI |
21 |
JIAO D X, HE R T, WANG L Y, et al. Research on a short-term forecast of industry load based on PSO-LSTM[J]. Journal of Physics: Conference Series, 2024, 2814 (1): 012040.
DOI |
22 |
FAN C C, ZHENG Y X, WANG S Q, et al. Prediction of bond strength of reinforced concrete structures based on feature selection and GWO-SVR model[J]. Construction and Building Materials, 2023, 400, 132602.
DOI |
23 |
AHMED U, KHAN A R, MAHMOOD A, et al. Short-term global horizontal irradiance forecasting using weather classified categorical boosting[J]. Applied Soft Computing, 2024, 155, 111441.
DOI |
24 | 刘洋, 伍双喜, 朱誉, 等. 基于CEEMDAN和DBO-GRNN的风电功率超短期预测[J]. 电力建设, 2024, 45 (8): 97- 105. |
LIU Yang, WU Shuangxi, ZHU Yu, et al. Ultra-short-term prediction of wind power based on CEEMDAN and DBO-GRNN[J]. Electric Power Construction, 2024, 45 (8): 97- 105. | |
25 | 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52 (8): 123- 133. |
LIU Jie, CONG Lanmei, XIA Yuanyang, et al. Short-term power load prediction based on DBO-VMD and an IWOA-BILSTM neural network combination model[J]. Power System Protection and Control, 2024, 52 (8): 123- 133. | |
26 | 丁立, 吴东晖, 隋佳音, 等. 基于MIV-DBO-DeepAR模型的净负荷预测研究[J/OL]. 华北电力大学学报(自然科学版), 1–14[2025-01-27]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240311.1446.002.html. |
DING Li, WU Donghui, SUI Jiayin, et al. Research on net load prediction based on MIV-DBO-DeepAR model [J/OL]. Journal of North China Electric Power University (Natural Science Edition) , 1–14[2025-01-27]. http://kns.cnki.net/kcms/detail/13.1212.TM.20240311.1446.002.html. |
[1] | 李科, 潘庭龙, 许德智. 基于MSCNN-BiGRU-Attention的短期电力负荷预测[J]. 中国电力, 2025, 58(6): 10-18. |
[2] | 孙庆超, 李嘉靓, 江万里, 王若愚, 李植鹏, 胡亚荣, 朱健斌. 基于数据驱动时空网络的城市中长期电力负荷预测[J]. 中国电力, 2025, 58(3): 168-174. |
[3] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[4] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[5] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[6] | 刘航, 申皓, 杨勇, 纪陵, 余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测[J]. 中国电力, 2024, 57(5): 61-69. |
[7] | 李丹, 贺帅, 颜伟, 胡越, 方泽仁, 梁云嫣. 考虑动态时间锚点和典型特征约束的年日均负荷曲线预测[J]. 中国电力, 2024, 57(11): 36-47. |
[8] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[9] | 唐旭辰, 潮铸, 段秦尉, 苏炳洪, 陈卉灿. 基于分层测量数据的高压变电站概率负荷预测方法[J]. 中国电力, 2023, 56(8): 143-150. |
[10] | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56(8): 151-156,165. |
[11] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[12] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
[13] | 李文武, 石强, 李丹, 胡群勇, 唐芸, 梅锦超. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171-177. |
[14] | 徐宇颂, 邹山花, 卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55(7): 121-127. |
[15] | 李丹, 张远航, 李黄强, 童华敏, 王凌云. 基于精准气象数据的地区电网短期负荷智能预测系统设计[J]. 中国电力, 2022, 55(7): 128-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||