中国电力 ›› 2025, Vol. 58 ›› Issue (4): 107-118.DOI: 10.11930/j.issn.1004-9649.202501026
郑佳俊1(), 段小宇1(
), 胡泽春1(
), 胡晓锐2, 朱彬2
收稿日期:
2025-01-08
录用日期:
2025-04-08
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
ZHENG Jiajun1(), DUAN Xiaoyu1(
), HU Zechun1(
), HU Xiaorui2, ZHU Bin2
Received:
2025-01-08
Accepted:
2025-04-08
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
针对组件式移动充电设施这一新型电动汽车补电设施,研究其插座组件规划与充电器组件投放调度方法。首先,建立电动汽车用户出行的机理模型,预测城区内充电需求的时空分布。其次,在上层建立以运营商收益最优为目标的充电设施插座组件规划模型。然后,在下层针对车辆路由问题,建立充电设施充电器组件的优化投放模型。最后,设计基于分步解耦和迭代反馈的优化模型求解方法。算例仿真结果表明,组件式移动充电设施可以在满足用户充电需求的前提下降低充电运营商的成本、提升设备利用率,是固定式充电设施的有益补充。
郑佳俊, 段小宇, 胡泽春, 胡晓锐, 朱彬. 组件式移动充电设施布局优化方法与投放策略[J]. 中国电力, 2025, 58(4): 107-118.
ZHENG Jiajun, DUAN Xiaoyu, HU Zechun, HU Xiaorui, ZHU Bin. Modular Mobile Charging Facility Layout Optimization Method and Deployment Strategy[J]. Electric Power, 2025, 58(4): 107-118.
节点序号 | 固定式充电设施数量 | 充电设施所有方 | ||
8 | 5 | 我方运营商 | ||
9 | 10 | 其他运营商 | ||
21 | 5 | 我方运营商 | ||
23 | 10 | 其他运营商 |
表 1 测试区域内原有固定式充电设施分布
Table 1 Distribution of existing fixed charging facilities in the test area
节点序号 | 固定式充电设施数量 | 充电设施所有方 | ||
8 | 5 | 我方运营商 | ||
9 | 10 | 其他运营商 | ||
21 | 5 | 我方运营商 | ||
23 | 10 | 其他运营商 |
节点序号 | 吸引力因子 | 节点序号 | 吸引力因子 | |||
2 | 1 | 15 | 1 | |||
3 | 2 | 18 | 1 | |||
5 | 3 | 19 | 1 | |||
7 | 1 | 20 | 3 | |||
8 | 1 | 21 | 3 | |||
10 | 4 | 22 | 1 | |||
13 | 3 | 23 | 1 | |||
14 | 4 | 24 | 2 |
表 2 吸引力参数设置
Table 2 Attraction parameter settings
节点序号 | 吸引力因子 | 节点序号 | 吸引力因子 | |||
2 | 1 | 15 | 1 | |||
3 | 2 | 18 | 1 | |||
5 | 3 | 19 | 1 | |||
7 | 1 | 20 | 3 | |||
8 | 1 | 21 | 3 | |||
10 | 4 | 22 | 1 | |||
13 | 3 | 23 | 1 | |||
14 | 4 | 24 | 2 |
参数名称 | 参数值/分布 | 参数下限 | 参数上限 | |||
电池容量/(kW·h) | 80 | / | / | |||
起始状态SOC | N(0.5, 0.1) | 0.2 | 0.9 | |||
SOC最低心理阈值 | N(0.4, 0.05) | 0.2 | 0.6 | |||
SOC最高心理阈值 | N(0.8, 0.05) | 0.7 | 1 | |||
单位里程耗电量/(kW·h·km–1) | 0.2 | / | / | |||
月收入/元 | N( |
表 3 电动汽车参数设置
Table 3 Electric vehicle parameter settings
参数名称 | 参数值/分布 | 参数下限 | 参数上限 | |||
电池容量/(kW·h) | 80 | / | / | |||
起始状态SOC | N(0.5, 0.1) | 0.2 | 0.9 | |||
SOC最低心理阈值 | N(0.4, 0.05) | 0.2 | 0.6 | |||
SOC最高心理阈值 | N(0.8, 0.05) | 0.7 | 1 | |||
单位里程耗电量/(kW·h·km–1) | 0.2 | / | / | |||
月收入/元 | N( |
参数名称 | 数值 | |
额定充电功率/kW | 80 | |
充电效率 | 0.95 | |
使用年限/年 | 10 | |
场地租金价格/(元·年–1) | ||
插座组件单价/元 | ||
充电器组件单价/元 | ||
折现率 | 0.03 |
表 4 充电设施参数设置
Table 4 Electric vehicle parameter settings
参数名称 | 数值 | |
额定充电功率/kW | 80 | |
充电效率 | 0.95 | |
使用年限/年 | 10 | |
场地租金价格/(元·年–1) | ||
插座组件单价/元 | ||
充电器组件单价/元 | ||
折现率 | 0.03 |
节点序号 | 插座组件数量/个 | 节点序号 | 插座组件数量/个 | |||
3 | 7 | 8 | 4 | |||
6 | 10 | 13 | 12 | |||
7 | 6 | 21 | 2 |
表 5 组件式充电设施插座组件规划结果
Table 5 Planning results for modular charging facility socket component
节点序号 | 插座组件数量/个 | 节点序号 | 插座组件数量/个 | |||
3 | 7 | 8 | 4 | |||
6 | 10 | 13 | 12 | |||
7 | 6 | 21 | 2 |
时段 | 不同节点充电器组件数量/个 | |||||||||||||
3 | 6 | 7 | 8 | 13 | 21 | |||||||||
工作日 | 时段1 | 6 | 5 | 4 | 2 | 6 | 0 | |||||||
时段2 | 7 | 5 | 4 | 2 | 12 | 0 | ||||||||
时段3 | 6 | 5 | 4 | 2 | 6 | 0 | ||||||||
时段4 | 6 | 8 | 6 | 2 | 6 | 2 | ||||||||
星期五 | 时段1 | 6 | 7 | 6 | 3 | 6 | 0 | |||||||
时段2 | 7 | 4 | 4 | 3 | 12 | 0 | ||||||||
时段3 | 7 | 7 | 2 | 3 | 6 | 0 | ||||||||
时段4 | 6 | 7 | 6 | 3 | 6 | 2 | ||||||||
周末 | 时段1 | 7 | 10 | 3 | 4 | 5 | 0 | |||||||
时段2 | 7 | 10 | 3 | 4 | 5 | 0 | ||||||||
时段3 | 7 | 10 | 3 | 4 | 5 | 0 | ||||||||
时段4 | 7 | 10 | 6 | 4 | 5 | 0 |
表 6 组件式充电设施充电器组件投放结果
Table 6 Deployment results for modular charging facility charger component
时段 | 不同节点充电器组件数量/个 | |||||||||||||
3 | 6 | 7 | 8 | 13 | 21 | |||||||||
工作日 | 时段1 | 6 | 5 | 4 | 2 | 6 | 0 | |||||||
时段2 | 7 | 5 | 4 | 2 | 12 | 0 | ||||||||
时段3 | 6 | 5 | 4 | 2 | 6 | 0 | ||||||||
时段4 | 6 | 8 | 6 | 2 | 6 | 2 | ||||||||
星期五 | 时段1 | 6 | 7 | 6 | 3 | 6 | 0 | |||||||
时段2 | 7 | 4 | 4 | 3 | 12 | 0 | ||||||||
时段3 | 7 | 7 | 2 | 3 | 6 | 0 | ||||||||
时段4 | 6 | 7 | 6 | 3 | 6 | 2 | ||||||||
周末 | 时段1 | 7 | 10 | 3 | 4 | 5 | 0 | |||||||
时段2 | 7 | 10 | 3 | 4 | 5 | 0 | ||||||||
时段3 | 7 | 10 | 3 | 4 | 5 | 0 | ||||||||
时段4 | 7 | 10 | 6 | 4 | 5 | 0 |
1 | 新华社. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-10-25)[2024-12-25]. https://www.gov.cn/xinwen/2021-10/25/content_5644687.htm. |
2 | 佩宁, 毛保华, 童瑞咏, 等. 我国交通运输行业及不同运输方式的碳排放水平和强度分析[J]. 气候变化研究进展, 2023, 19 (3): 347- 356. |
TIAN Peining, MAO Baohua, TONG Ruiyong, ZHANG Hao-Xiang, ZHOU Qi. Analysis of carbon emission level and intensity of China's transportation industry and different transportation modes[J]. Climate Change Research, 2023, 19 (3): 347- 356. | |
3 |
胡泽春, 邵成成, 何方, 等. 电网与交通网耦合的设施规划与运行优化研究综述及展望[J]. 电力系统自动化, 2022, 46 (12): 3- 19.
DOI |
HU Zechun, SHAO Chengcheng, HE Fang, et al. Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems, 2022, 46 (12): 3- 19.
DOI |
|
4 |
ESTEBAN B, SID-AHMED M, KAR N C. A comparative study of power supply architectures in wireless EV charging systems[J]. IEEE Transactions on Power Electronics, 2015, 30 (11): 6408- 6422.
DOI |
5 | 蔡子龙, 束洪春, 单节杉. 考虑运营成本的电动公交车集群换电优化调度策略[J]. 电力系统自动化, 2022, 46 (17): 205- 217. |
CAI Zilong, SHU Hongchun, SHAN Jieshan. Optimal Dispatching strategy for battery swapping of electric bus cluster considering operation cost[J]. Automation of Electric Power Systems, 2022, 46 (17): 205- 217. | |
6 |
AFSHAR S, MACEDO P, MOHAMED F, et al. Mobile charging stations for electric vehicles—a review[J]. Renewable and Sustainable Energy Reviews, 2021, 152, 111654.
DOI |
7 | Feng J, Hu Z, Duan X. ev fast charging station planning considering competition based on stochastic dynamic equilibrium[J]. IEEE Transactions on Industry Applications, 2023. |
8 |
陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30 (4): 216- 225.
DOI |
CHEN Lidan, NIE Yongquan, ZHONG Qing. A Model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrotechnical Society, 2015, 30 (4): 216- 225.
DOI |
|
9 | 王海玲, 张美霞, 杨秀. 基于气温影响的电动汽车充电需求预测[J]. 电测与仪表, 2017, 54 (23): 123- 128. |
WANG Hailing, ZHANG Meixia, YANG Xiu. Electric Vehicle Charging Demand Forecasting Based on Influence of Weather and Temperature[J]. Electrical Measurement & Instrumentation, 2017, 54 (23): 123- 128. | |
10 |
李宗华, 翟钧, 王贤军, 等. 基于使用行为的电动汽车驾驶员里程焦虑模型[J]. 汽车安全与节能学报, 2021, 12 (2): 226- 231.
DOI |
LI Zonghua, ZHAI Jun, WANG Xianjun, et al. Electric vehicle driver's range anxiety model based on use behavior[J]. Journal of Automotive Safety and Eneergy, 2021, 12 (2): 226- 231.
DOI |
|
11 |
李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化, 2019, 43 (21): 88- 96.
DOI |
LI Hanyu, DU Zhaobin, CHEN Lidan, et al. Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43 (21): 88- 96.
DOI |
|
12 | IVERSEN E B, MOLLER J K, MORALES J M, et al. Inhomogeneous Markov models for describing driving patterns[J]. IEEE Transaction, Smart Grid, 2017, 8 (2): 581- 588. |
13 | DA LIO B, GUGLIELMI A V, BADIA L. Markov models for electric vehicles: the role of battery parameters and charging point frequency[C]//Proceedings of 20th IEEE International Workshop Computer Aided Modelling and Design of Communication Links and Networks, 2016: 207–210. |
14 | HE K, JIA H, MU Y, et al. Coordinated planning of fixed and mobile charging facilities for electric vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. |
15 |
ZHANG Y, LIU X, WEI W, et al. Mobile charging: a novel charging system for electric vehicles in urban areas[J]. Applied Energy, 2020, 278, 115648.
DOI |
16 |
MOGHADDAM V, AHMAD I, HABIBI D, et al. Dispatch management of portable charging stations in electric vehicle networks[J]. ETransportation, 2021, 8, 100112.
DOI |
17 |
CUI S, ZHAO H, ZHANG C. Multiple types of plug-in charging facilities' location-routing problem with time windows for mobile charging vehicles[J]. Sustainability, 2018, 10 (8): 2855.
DOI |
18 | 戚博硕. 电动汽车移动充电服务的一体化经济调度[D]. 天津: 天津大学, 2018. |
QI Boshuo. Integrated economic dispatching on electric vehicle mobile charging service[D]. Tianjin: Tianjin University, 2018. | |
19 |
QURESHI U, GHOSH A, PANIGRAHI B K. Scheduling and routing of mobile charging stations with stochastic travel times to service heterogeneous spatiotemporal electric vehicle charging requests with time windows[J]. IEEE Transactions on Industry Applications, 2022, 58 (5): 6546- 6556.
DOI |
20 |
JEON S, CHOI D H. Optimal energy management framework for truck-mounted mobile charging stations considering power distribution system operating conditions[J]. Sensors, 2021, 21 (8): 2798.
DOI |
21 | CHEN Q, LI K, LIU Z. Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 69: 218–235. |
[1] | 苏大威, 范旖晖, 赵天辉, 潘虹锦, 黄佑会, 王岗, 贾勇勇. 基于价格激励的城市公共充电站填谷潜力评估[J]. 中国电力, 2025, 58(4): 131-139. |
[2] | 颜俊, 罗宇杰, 颜安, 贺伟, 韩涛, 杨军. 计及用户响应特性的电动汽车充电站设备优化配置方法[J]. 中国电力, 2025, 58(4): 140-147. |
[3] | 李晓涵, 曹伟. 弹性充电需求下电动汽车调频激励机制及控制策略[J]. 中国电力, 2025, 58(4): 148-158. |
[4] | 丁屹峰, 曾爽, 张宝群, 王立永, 刘畅, 付智, 张吉. 光伏-直流智能充电桩有序充电策略与应用效果[J]. 中国电力, 2024, 57(5): 70-77. |
[5] | 吕志鹏, 宋振浩, 李立生, 刘洋. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
[6] | 杨磊, 浑连明, 祖国强, 李树军, 李心达, 郭俊龙, 张玉涛. 电动汽车充电机器人发展现状和标准需求[J]. 中国电力, 2024, 57(4): 89-99. |
[7] | 张雷, 肖伟栋, 蒋纯冰, 刘耀, 李少杰, 张吉. 光伏办公建筑的关键设备容量配置方法[J]. 中国电力, 2024, 57(3): 152-159, 169. |
[8] | 周原冰, 龚乃玮, 王皓界, 肖晋宇, 张赟. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11. |
[9] | 张俊成, 黎敏, 刘志文, 谭靖, 陶毅刚, 罗天禄. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56(9): 96-103,119. |
[10] | 叶宇剑, 袁泉, 汤奕. 面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法[J]. 中国电力, 2023, 56(5): 72-79. |
[11] | 安佳坤, 杨书强, 王涛, 贺春光, 张菁, 袁超, 窦春霞. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56(5): 80-88. |
[12] | 赵建立, 向佳霓, 汤卓凡, 漆磊, 艾芊, 王帝, 殷爽睿. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56(2): 1-13. |
[13] | 刘宗, 何俊, 黄文涛, 朱理文, 邓长虹. 基于态势感知的高渗透率电动汽车接入电网后电压调整策略[J]. 中国电力, 2023, 56(2): 32-44. |
[14] | 吴岩, 王光政. 基于CiteSpace的配电网韧性评估与提升研究综述与展望[J]. 中国电力, 2023, 56(12): 100-112, 137. |
[15] | 李旭东, 杨烨, 李帆琪, 时全佑, 谭忠富. 计及电价不确定性和容量衰减的电动汽车充放电商业模式[J]. 中国电力, 2023, 56(1): 38-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||