[1] 中华人民共和国国务院新闻办公室. 政府白皮书: 新时代的中国能源发展[EB/OL]. (2020-12-05) [2022-08-18]. http://www.scio.gov.cn/zfbps/32832/Document/1695117/1695117.htm. [2] United States Environmental Protection Agency. Global greenhouse gas emissions data[EB/OL]. (2022 -02-25) [2022-08-18]. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. [3] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1–6 TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14 th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1–6 [4] 张庭婷, 梁晓静, 吕强, 等. 面向碳中和的汽车行业碳排放核算[J]. 汽车工程学报, 2022, 12(4): 341–350 ZHANG Tingting, LIANG Xiaojing, LYU Qiang, et al. Vehicle carbon emission accounting for carbon neutrality[J]. Chinese Journal of Automotive Engineering, 2022, 12(4): 341–350 [5] 袁泉, 汤奕. 基于路–电耦合网络的电动汽车需求响应技术[J]. 中国电机工程学报, 2021, 41(5): 1627–1637 YUAN Quan, TANG Yi. Electric vehicle demand response technology based on traffic-grid coupling networks[J]. Proceedings of the CSEE, 2021, 41(5): 1627–1637 [6] TENG F, DING Z H, HU Z C, et al. Technical review on advanced approaches for electric vehicle charging demand management, part I: applications in electric power market and renewable energy integration[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5684–5694. [7] ZHONG R X, XU R C, SUMALEE A, et al. Pricing environmental externality in traffic networks mixed with fuel vehicles and electric vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5535–5554. [8] 刘洪, 张旭, 刘畅, 等. 考虑充电设施充裕性的电动私家车出行与充电需求时序交互分析[J]. 中国电机工程学报, 2018, 38(18): 5469–5478 LIU Hong, ZHANG Xu, LIU Chang, et al. Timing interactive analysis of electric private vehicle traveling and charging demand considering the sufficiency of charging facilities[J]. Proceedings of the CSEE, 2018, 38(18): 5469–5478 [9] 钱斌, 林晓明, 罗欣儿, 等. 不同价格机制下住宅小区电动汽车能量管理优化分析[J/OL]. 中国电力, 2021: 1–8. (2021-05-18). https://kns.cnki.net/kcms/detail/11.3265.tm.20210518.1349.002.html. QIAN Bin, LIN Xiaoming, LUO Xiner, et al. Energy management optimization of electric vehicles in residential areas under different price mechanisms[J/OL]. Electric Power, 2021: 1–8. (2021-05-18). https://kns.cnki.net/kcms/detail/11.3265.tm.20210518.1349.002.html. [10] 陈浩, 胡俊杰, 袁海峰, 等. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54(12): 162–169 CHEN Hao, HU Junjie, YUAN Haifeng, et al. Research on supplementary frequency regulation with aggregated electric vehicles considering distribution network congestion[J]. Electric Power, 2021, 54(12): 162–169 [11] YUAN Q, YE Y, TANG Y, et al. A novel deep-learning based surrogate modeling of stochastic electric vehicle traffic user equilibrium in low-carbon electricity-transportation nexus[J]. Applied Energy, 2022, 315: 118961. [12] SUN X Z, QIU J. Hierarchical voltage control strategy in distribution networks considering customized charging navigation of electric vehicles[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4752–4764. [13] QIAN T, SHAO C C, LI X L, et al. Enhanced coordinated operations of electric power and transportation networks via EV charging services[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3019–3030. [14] 张琳玲. 碳减排目标下城市交通出行结构优化与调控研究[D]. 徐州: 中国矿业大学, 2019. ZHANG Linling. Optimization and regulation of urban traffic structure under carbon emissions reduction target[D]. Xuzhou: China University of Mining and Technology, 2019. [15] WEI X, ZHANG X, SUN Y X, et al. Carbon emission flow oriented tri-level planning of integrated electricity–hydrogen–gas system with hydrogen vehicles[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2607–2618. [16] 陈妍希. 含规模化电动汽车的虚拟电厂低碳调度[D]. 南京: 东南大学, 2021. CHEN Yanxi. Low-carbon scheduling of virtual power plants containing large-scale electric vehicles[D]. Nanjing: Southeast University, 2021. [17] 余苏敏, 杜洋, 史一炜, 等. 考虑V2 B智慧充电桩群的低碳楼宇优化调度[J]. 电力自动化设备, 2021, 41(9): 95–101 YU Sumin, DU Yang, SHI Yiwei, et al. Optimal scheduling of low-carbon building considering V2 B smart charging pile groups[J]. Electric Power Automation Equipment, 2021, 41(9): 95–101 [18] 郑庆, 林恺丰, 何淑琳, 等. 基于多元融合的智慧园区电能源低碳调控方法研究[J]. 工业加热, 2021, 50(11): 54–58 ZHENG Qing, LIN Kaifeng, HE Shulin, et al. Research on low carbon regulation method of electric energy in smart park based on multi-integration[J]. Industrial Heating, 2021, 50(11): 54–58 [19] 李浩, 陈浩, 陆续, 等. 考虑排放约束的电动汽车混行交通路网均衡模型[J]. 交通运输工程与信息学报, 2021, 19(4): 24–35,117 LI Hao, CHEN Hao, LU Xu, et al. Mixed traffic network equilibrium with battery electric vehicles considering emission constraints[J]. Journal of Transportation Engineering and Information, 2021, 19(4): 24–35,117 [20] LIU D N, WANG L X, WANG W Y, et al. Strategy of large-scale electric vehicles absorbing renewable energy abandoned electricity based on master-slave game[J]. IEEE Access, 2021, 9: 92473–92482. [21] 汤奕. 电力网络源流路径电气剖分方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. TANG Yi. Electrical dissecting method of paths between sources and flows in power network[D]. Harbin: Harbin Institute of Technology, 2006. [22] HASLAK T. Comparison of simulated annealing and greedy optimizations for controllable loads[C]//2021 IEEE Green Energy and Smart Systems Conference (IGESSC). Long Beach, CA, USA. IEEE, 2021: 1–6. |