中国电力 ›› 2023, Vol. 56 ›› Issue (5): 72-79.DOI: 10.11930/j.issn.1004-9649.202209038

• 双碳目标下的新型电力系统 • 上一篇    下一篇

面向双碳目标的交通网-电网耦合网络中电动汽车负荷低碳优化方法

叶宇剑, 袁泉, 汤奕   

  1. 东南大学 电气工程学院, 江苏 南京 210096
  • 收稿日期:2022-09-13 修回日期:2022-12-28 出版日期:2023-05-28 发布日期:2023-05-27
  • 作者简介:叶宇剑(1988-),男,通信作者,博士,副研究员,从事电力市场与人工智能研究,E-mail:yeyujian@seu.edu.cn;袁泉(1996-),女,博士研究生,从事电力系统需求响应研究,E-mail:koizumi1032@gmail.com;汤奕(1977-),男,博士,教授,从事电力系统稳定分析、电力信息物理系统等研究,E-mail:tangyi@seu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金资助项目(52207082)

Electric Vehicle Charging Demand Low Carbon Optimization in Traffic-Grid Coupling Networks Towards “Dual Carbon” Goal

YE Yujian, YUAN Quan, TANG Yi   

  1. School of Electrical Engineering, Southeast University, Nanjing 210096, China
  • Received:2022-09-13 Revised:2022-12-28 Online:2023-05-28 Published:2023-05-27
  • Supported by:
    This work is supported by Youth Fund of National Science Foundation of China (No.52207082).

摘要: 交通系统与电力系统是全球化石能源消耗的两大主体,也是双碳目标下需要重点优化的对象。电动汽车兼具交通与用电属性,其作为燃油车的环保替代品虽然可以避免行驶过程中的直观碳排放,却会在充电的同时产生上游发电碳排放,因此亟待解决如何通过优化电动汽车的充电负荷来减少整个系统的碳排放。提出一种面向双碳目标的交通网-电网耦合网络中电动汽车充电负荷低碳优化方法。先将电动汽车的行驶、充电行为进行建模得到电动汽车的聚合充电负荷,再依据电网最优潮流结果进行碳排放的溯源与追踪,进而提出基于模拟退火算法的优化求解框架与方法,在不牺牲用户原本充电需求的前提下,仅通过转移充电负荷的时空分布,将原本由火电承担的部分功率转移给新能源发电,在提升新能源就地消纳的同时降低整个耦合网络的碳排放总量。最后通过算例分析验证了所提低碳调度方法的有效性。

关键词: 双碳目标, 电动汽车, 交通网-电网耦合网络, 低碳优化, 碳流追踪, 模拟退火算法

Abstract: The transportation and electricity systems are two major parts of global fossil energy consumption, and are also the important targets for optimization under the “dual carbon” goal. Electric vehicles (EV) have the nature of both transportation and electricity-use, and feature zero on-road carbon emissions, while the upstream generation carbon emissions associated with EV charging demand are still accountable. It is therefore urgently needed to reduce the carbon emissions of the whole system through optimizing the EV charging loads. In this context, this paper proposes an EV charging demand low carbon optimization method in traffic-grid coupling networks towards the “dual carbon” goal. Firstly, the EV driving flows and their charging behavior in the coupling networks are modeled to obtain the aggregated EV charging loads. Then the carbon emissions flow is traced according to the optimal power flow results of grid. Given the above-mentioned model, the optimization problem is solved based on the simulated annealing algorithm. Under the circumstance of not sacrificing the charging demand of EV users, part of the charging power supported by thermal units will be transferred to renewable energy resources through temporal-spatial redistribution of charging loads, subsequently reducing the total carbon emissions of the coupling networks while improving the local consumption of renewable energy resources. Finally, case studies have demonstrated the effectiveness of the proposed low carbon scheduling method.

Key words: “dual carbon” goal, electric vehicle, traffic-grid coupling networks, low carbon optimization, carbon emission flow tracing, simulated annealing algorithm