中国电力 ›› 2023, Vol. 56 ›› Issue (1): 96-105,118.DOI: 10.11930/j.issn.1004-9649.202211051

• 电网 • 上一篇    下一篇

基于深度强化学习的户内变电站通风降噪优化设计

汤锦慧1, 伍发元1, 支妍力2, 毛梦婷1, 代小敏1   

  1. 1. 国网 江西省电力有限公司电力科学研究院,江西 南昌 330096;
    2. 华东交通大学 电气与自动化工程学院,江西 南昌 330013
  • 收稿日期:2022-10-14 修回日期:2022-11-15 出版日期:2023-01-28 发布日期:2023-01-14
  • 作者简介:汤锦慧(1991-),女,硕士研究生,从事电力系统环保和消防安全研究,E-mail:15070991755@163.com;伍发元(1979-),男,通信作者,高级工程师(教授级),从事电力环境保护与消防安全研究,E-mail:894586743@qq.com
  • 基金资助:
    国家电网有限公司科技项目(5200-202132088A-0-0-00)

Optimization Design of Indoor Substation Ventilation and Noise Reduction Based on Deep Reinforcement Learning

TANG Jinhui1, WU Fayuan1, ZHI Yanli2, MAO Mengting1, DAI Xiaomin1   

  1. 1. Electric Power Research Institute of State Grid Jiangxi Electric Power Co., Ltd., Nanchang 330096, China;
    2. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
  • Received:2022-10-14 Revised:2022-11-15 Online:2023-01-28 Published:2023-01-14
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.5200-202132088A-0-0-00)

摘要: 针对户内变电站运行发热导致温度过高引发安全风险,以及采取相关散热措施可能导致噪声扰民的问题,提出一种基于有限元仿真和深度强化学习的户内变电站进风口设计参数优化方法。以此对户内变电站通风系统进风口位置大小进行优化设计,使其获得最优通风降噪效果。首先,通过有限元分析法对其温度场、流体场和声场进行仿真建模;然后,基于大量仿真数据,采用卷积神经网络建立温度和噪声的预测模型;最后,考虑噪声约束,利用基于最大熵强化学习框架的SAC算法,以变电站室内温度最低为目标对进风口设计参数进行优化求解。研究结果表明,经过优化后的进风口设计方案能够有效降低变电站室内温度,同时使噪声满足国家规范要求。

关键词: 户内变电站, 有限元法, 通风降噪, 强化学习, 优化设计

Abstract: In view of the equipment safety problems caused by the high operation temperature of the indoor substations and the disturbing noise problems caused by relevant heat dissipation measures, this paper proposes a method for optimizing the design parameters of indoor substation air inlets based on finite element simulation and deep reinforcement learning to obtain the optimal ventilation and heat dissipation effects. Firstly, the temperature field, fluid field and sound field of the indoor substations are modeled and simulated with the finite element analysis method. Then, based on a large number of simulation data, the convolutional neural network is used to establish the prediction model of temperature and noise. Finally, considering the noise constraint, the maximum entropy reinforcement learning framework based SAC algorithm is used to optimize the design parameters of the air inlets with the goal of minimizing the indoor temperature of the substation. The research results show that the optimized air inlet design scheme can effectively reduce the indoor temperature in the substation, and at the same time make the noise meet the requirements of national regulations.

Key words: indoor substation, finite element method, ventilation and noise reduction, reinforcement learning, optimization design