中国电力 ›› 2024, Vol. 57 ›› Issue (4): 52-60.DOI: 10.11930/j.issn.1004-9649.202306045
张丝钰1(), 张宁1(
), 代红才1, 冯长有2, 周专3, 朱克平4
收稿日期:
2023-06-14
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
张丝钰(1993—),女,博士,研究员,从事氢能、能源电力规划、能源转型、综合能源等领域研究,E-mail:siyuzhang0731@163.com基金资助:
Siyu ZHANG1(), Ning ZHANG1(
), Hongcai DAI1, Changyou FENG2, Zhuan ZHOU3, Keping ZHU4
Received:
2023-06-14
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
可再生能源电解水制备所得的氢气,可助力部分难以实现电气化替代的部门深度脱碳,并推动不同部门和能源网络之间形成协同效应。系统配置与生产运行方案的优化是降低绿氢制取成本、提升其经济竞争力的关键。本文提出了一种可再生能源电解水制氢系统规划优化与生产模拟模型,深入分析风电/光伏、电化学储能等关键设备以及电解槽的容量配比、电价水平等关键因素对氢气平准化成本的影响机理,并结合西北、东南2个代表性地区开展典型案例研究。研究结果表明,用电成本是影响绿氢经济性的主要因素,绿氢项目向新能源富集地区聚集,在少数优质资源地的绿氢制取成本已降至20元/kg左右。若未来电价水平与当前基本持平,绿氢项目运行模式将逐步由并网向将电网作为备用的模式转变。研究结论可为绿氢项目的规划建设提供理论指导与重要参考。
张丝钰, 张宁, 代红才, 冯长有, 周专, 朱克平. 可再生能源电解水制氢系统规划优化与生产模拟[J]. 中国电力, 2024, 57(4): 52-60.
Siyu ZHANG, Ning ZHANG, Hongcai DAI, Changyou FENG, Zhuan ZHOU, Keping ZHU. Optimization and Simulation on Hydrogen Production System Using Water Electrolysis Powered by Renewable Energy[J]. Electric Power, 2024, 57(4): 52-60.
参数 | 当前 | 2030年 | ||
电解槽的设备投资成本X1/(元∙kW–1) | 1500 | 1000 | ||
电解槽的设备运维成本O1/(元∙(kW∙年)–1) | 70.5 | 47 | ||
光伏电站的设备投资成本X2/(元∙kW–1) | 3420 | 2050 | ||
光伏电站的设备运维成本O2/(元∙(kW∙年)–1) | 34.2 | 20.5 | ||
风电站的设备投资成本X3/(元∙kW–1) | 5140 | 3341 | ||
风电站的设备运维成本O3/(元∙(kW∙年)–1) | 143.9 | 93.5 | ||
电化学储能的设备投资成本X4/(元∙(kW∙h)–1) | 2500 | 1500 | ||
电化学储能的设备运维成本O4/(元∙(kW∙年)–1) | 62.5 | 37.5 | ||
电解槽的效率 FL | 0.7 | |||
电化学储能机组的效率 FS | 0.9 | |||
电化学储能充电时间 hS/h | 4 | |||
折现率 r/% | 8 |
表 1 模型关键参数取值
Table 1 Values for key parameters
参数 | 当前 | 2030年 | ||
电解槽的设备投资成本X1/(元∙kW–1) | 1500 | 1000 | ||
电解槽的设备运维成本O1/(元∙(kW∙年)–1) | 70.5 | 47 | ||
光伏电站的设备投资成本X2/(元∙kW–1) | 3420 | 2050 | ||
光伏电站的设备运维成本O2/(元∙(kW∙年)–1) | 34.2 | 20.5 | ||
风电站的设备投资成本X3/(元∙kW–1) | 5140 | 3341 | ||
风电站的设备运维成本O3/(元∙(kW∙年)–1) | 143.9 | 93.5 | ||
电化学储能的设备投资成本X4/(元∙(kW∙h)–1) | 2500 | 1500 | ||
电化学储能的设备运维成本O4/(元∙(kW∙年)–1) | 62.5 | 37.5 | ||
电解槽的效率 FL | 0.7 | |||
电化学储能机组的效率 FS | 0.9 | |||
电化学储能充电时间 hS/h | 4 | |||
折现率 r/% | 8 |
1 | International Energy Agency. The future of hydrogen: seizing today's opportunities[EB/OL]. (2019-06-15)[2023-06-14].https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf. |
2 | International Renewable Energy Agency. Hydrogen: a renewable energy perspective[EB/OL]. (2019-09-13)[2023-06-14].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf. |
3 | International Renewable Energy Agency. Innovation landscape brief: renewable power-to-hydrogen[EB/OL]. (2019-06-10)[2023-06-14].https://hydrogen-portal.com/wp-content/uploads/2021/12/IRENA_Power-to-Hydrogen_Innovation_2019.pdf. |
4 | Hydrogen Council, Mckinsey & Company. Hydrogen insights: a perspective on hydrogen investment, market development and cost competitiveness[EB/OL]. (2021-01-18)[2023-06-14].https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021.pdf. |
5 | Bloomberg New Energy Finance. Hydrogen economy outlook: key messages[EB/OL]. (2020-03-10)[2023-06-14].https://docslib.org/doc/13264448/hydrogen-economy-outlook-key-messages-march-30-2020.pdf. |
6 | Guidehouse. European hydrogen backbone: How a dedicated infrastructure can pave the way to large-scale competitive hydrogen for the European market[EB/OL]. (2022-04-25)[2023-06-14].https://www.ehb.eu/files/downloads/ehb-report-220428-17h00-interactive-1.pdf. |
7 |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24 (3): 89- 99.
DOI |
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China's new-type power system: application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24 (3): 89- 99.
DOI |
|
8 | International Renewable Energy Agency. Geopolitics of the energy transformation: the hydrogen factor[EB/OL]. (2022-01-15)[2023-06-14].https://www. irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hydrogen_2022.pdf. |
9 | International Renewable Energy Agency. Green hydrogen supply: a guide to policy making[EB/OL]. (2021-05-01)[2023-06-14].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/May/IRENA_Green_Hydrogen_Supply_2021.pdf. |
10 | 许传博, 赵云灏, 王晓晨, 等. 碳中和愿景下考虑电氢耦合的风光场站氢储能优化配置[J]. 电力建设, 2022, 43 (1): 10- 18. |
XU Chuanbo, ZHAO Yunhao, WANG Xiaochen, et al. Optimal configuration of hydrogen energy storage for wind and solar power stations considering electricity-hydrogen coupling under carbon neutrality vision[J]. Electric Power Construction, 2022, 43 (1): 10- 18. | |
11 | 袁铁江, 张昱, 栗磊, 等. 计及功率密度约束含氢储能的预装式多元储能电站容量优化配置研究[J]. 电工技术学报, 2021, 36 (3): 496- 506. |
YUAN Tiejiang, ZHANG Yu, LI Lei, et al. Capacity optimization configuration of pre-installed multi-energy storage power station considering power density constrained hydrogen storage[J]. Transactions of China Electrotechnical Society, 2021, 36 (3): 496- 506. | |
12 |
俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23 (2): 146- 152.
DOI |
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23 (2): 146- 152.
DOI |
|
13 | 邵志芳, 吴继兰, 赵强, 等. 风电制氢效费分析模型及仿真[J]. 技术经济, 2018, 37 (6): 69- 75, 129. |
SHAO Zhifang, WU Jilan, ZHAO Qiang, et al. Cost effectiveness analysis model for wind power produce hydrogen system and simulation[J]. Technology Economics, 2018, 37 (6): 69- 75, 129. | |
14 | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J/OL]. 化工学报, 2023: 1–28. (2023-01-31).https://kns.cnki.net/kcms/detail/11.1946.TQ.20230130.1519.006.html. |
ZHANG Shengan, LIU Guilian. An efficient hydrogen production system using solar water electrolysis and its performance's multi-objective optimization[J/OL]. CIESC Journal, 2023: 1–28. (2023-01-31).https://kns.cnki.net/kcms/detail/11.1946.TQ.20230130.1519.006.html. | |
15 | 李颢然, 薛屹洵, 戴铁潮, 等. 考虑氢负荷响应的化工园区电-氢耦合系统协同优化调度[J]. 工程科学与技术, 2023, 55 (1): 93- 100. |
LI Haoran, XUE Yixun, DAI Tiechao, et al. Collaborative optimal dispatch of electricity-hydrogen coupling system in chemical industry park considering hydrogen load response[J]. Advanced Engineering Sciences, 2023, 55 (1): 93- 100. | |
16 | 王笑雪, 高超, 刘一欣, 等. 计及多元不确定性的氢电耦合微电网多阶段动态规划方法[J/OL]. 电力自动化设备: 1–14. [2023-02-11].https://kns.cnki.net/kcms/detail//32.1318.TM.20221219.1641.001.html. |
WANG Xiaoxue, GAO Chao, LIU Yixin, et al. Multi-stage dynamic programming method for hydrogen-electric coupled microgrid considering multiple uncertainties [J/OL]. Electric Power Automation Equipment: 1–14. [2023-02-11].https://kns.cnki.net/kcms/detail//32.1318.TM.20221219.1641.001.html. | |
17 | 张瑀净, 张宝山, 孙洁. 电解水制氢技术及其催化剂研究进展[J]. 石油化工高等学校学报, 2022, 35 (6): 19- 27. |
ZHANG Yujing, ZHANG Baoshan, SUN Jie. Progress in hydrogen production by water electrolysis and its electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35 (6): 19- 27. | |
18 |
MUKHERJEE U, WALKER S, MAROUFMASHAT A, et al. Development of a pricing mechanism for valuing ancillary, transportation and environmental services offered by a power to gas energy system[J]. Energy, 2017, 128, 447- 462.
DOI |
19 |
GRUEGER F, MÖHRKE F, ROBINIUS M, et al. Early power to gas applications: reducing wind farm forecast errors and providing secondary control reserve[J]. Applied Energy, 2017, 192, 551- 562.
DOI |
20 |
LI J R, LIN J, ZHANG H C, et al. Optimal investment of electrolyzers and seasonal storages in hydrogen supply chains incorporated with renewable electric networks[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (3): 1773- 1784.
DOI |
21 |
PAN G S, GU W, LU Y P, et al. Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2662- 2676.
DOI |
22 | 侯慧, 刘鹏, 黄亮, 等. 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36 (S1): 133- 144. |
HOU Hui, LIU Peng, HUANG Liang, et al. Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China electrotechnical society, 2021, 36 (S1): 133- 144. | |
23 | 司杨, 陈来军, 陈晓弢, 等. 基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41 (10): 3- 10. |
SI Yang, CHEN Laijun, CHEN Xiaotao, et al. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41 (10): 3- 10. | |
24 |
姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44 (19): 194- 207.
DOI |
JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44 (19): 194- 207.
DOI |
|
25 | 马艳, 郭星辰, 陈汝科, 等. 基于多主体收益的电-气综合能源系统协调规划研究[J]. 智慧电力, 2021, 49 (2): 1- 6, 22. |
MA Yan, GUO Xingchen, CHEN Ruke, et al. Coordinated planning of electricity-gas integrated energy system considering multi-agent profit[J]. Smart Power, 2021, 49 (2): 1- 6, 22. | |
26 | 任洪波, 侯亚群, 李琦芬, 等. 基于博弈论的多能互补综合能源系统规划设计方法[J]. 科学技术与工程, 2021, 21 (5): 1812- 1819. |
REN Hongbo, HOU Yaqun, LI Qifen, et al. Planning and design method of multi-energy complementary energy system based on game theory[J]. Science Technology and Engineering, 2021, 21 (5): 1812- 1819. | |
27 | 杨楠, 黄禹, 董邦天, 等. 基于多主体博弈的电力–天然气综合能源系统联合规划方法研究[J]. 中国电机工程学报, 2019, 39 (22): 6521- 6533. |
YANG Nan, HUANG Yu, DONG Bangtian, et al. Research on the joint planning method of electricity-gas integrated energy system based on multi-agent game[J]. Proceedings of the CSEE, 2019, 39 (22): 6521- 6533. | |
28 | International Renewable Energy Agency. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5 ℃ climate goal[EB/OL]. (2020-12-03)[2023-06-14].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf. |
29 | International Renewable Energy Agency. Global hydrogen trade to meet the 1.5 ℃ climate goal: part III - green hydrogen cost and potential[EB/OL]. (2022-05-13)[2023-06-14].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/May/IRENA_Global_Hydrogen_Trade_Costs_2022.pdf. |
30 | International Renewable Energy Agency. Hydrogen from renewable power: technology outlook for the energy transition [EB/OL]. (2018-09-23)[2023-06-14].https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Sep/IRENA_Hydrogen_from_renewable_power_2018.pdf. |
[1] | 李湃, 卢慧, 李驰, 杜洪博. 多能互补发电系统电/热储能容量双层优化配置方法[J]. 中国电力, 2025, 58(3): 55-64. |
[2] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
[3] | 徐祥海, 商佳宜, 赵天煜, 龚莺飞, 何卫斌, 汤亚宸. 考虑碳排放限制与市场参与的储能利润优化[J]. 中国电力, 2025, 58(3): 204-212. |
[4] | 李金, 刘科孟, 许丹莉, 高为举, 黄磊, 吴浩星, 华昊辰. 基于共享储能站的多能互补微能源网外衍响应双层优化[J]. 中国电力, 2025, 58(2): 43-56. |
[5] | 赖业宁, 孙仲卿, 陆志平, 刘沁. 考虑储能资源聚合参与的电网优化运行与韧性提升策略[J]. 中国电力, 2025, 58(2): 57-65. |
[6] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
[7] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
[8] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
[9] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
[10] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[11] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[12] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[13] | 田刚领, 武鸿鑫, 李娟, 张柳丽, 谢佳, 李爱魁. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57(9): 247-256. |
[14] | 冯兴, 杨威, 张安安, 张曦, 李茜, 雷宪章. 双向可逆的集中式电氢耦合系统容量优化配置[J]. 中国电力, 2024, 57(8): 1-11. |
[15] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||