[1] 张正陵. 中国“十三五”新能源并网消纳形势、对策研究及多情景运行模拟分析[J]. 中国电力, 2018, 51(1): 2-9 ZHANG Zhengling. Research on situation and countermeasures of new energy integration in the 13th five-year plan period and its multi-scenario simulation[J]. Electric Power, 2018, 51(1): 2-9 [2] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29-35, 50 WANG Ningbo, MA Ming, QIANG Tongbo, et al. High-penetration new energy power system development: challenges, opportunities and countermeasures[J]. Electric Power, 2018, 51(1): 29-35, 50 [3] 李琼慧, 王彩霞. 从电力发展“十三五”规划看新能源发展[J]. 中国电力, 2017, 50(1): 30-36 LI Qionghui, WANG Caixia. Analysis on new energy development based on the 13th five-year electric power planning[J]. Electric Power, 2017, 50(1): 30-36 [4] 杨洁, 孙以泽, 徐洋. 微气候对单晶硅光伏阵列最大输出功率的影响[J]. 太阳能学报, 2015, 36(8): 1859-1864 YANG Jie, SUN Yize, XU Yang. Impact of micro-climate on maximum power output of single-crystalline silicon pv array[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1859-1864 [5] 陆丹, 袁越, 杨苏. 基于马尔可夫链蒙特卡洛法的独立风光柴储微网运行风险评估[J]. 电网技术, 2017, 41(3): 823-830 LU Dan, YUAN Yue, YANG Su. Operation risk assessment of islanded wind-PV-diesel-storage microgrid based on Markov chain Monte Carlo method[J]. Power System Technology, 2017, 41(3): 823-830 [6] 马瑞, 周谢, 彭舟, 等. 考虑气温因素的负荷特性统计指标关联特征数据挖掘[J]. 中国电机工程学报, 2015, 35(1): 43-51 MA Rui, ZHOU Xie, PENG Zhou, et al. Data mining on correlation feature of load characteristics statistical indexes considering temperature[J]. Proceedings of the CSEE, 2015, 35(1): 43-51 [7] 周磊, 李扬, 高赐威. 聚合空调负荷的温度调节方法改进及控制策略[J]. 中国电机工程学报, 2014, 34(31): 5579-5589 ZHOU Lei, LI Yang, GAO Ciwei. Improvement of temperature adjusting method for aggregated air-conditioning loads and its control strategy[J]. Proceedings of the CSEE, 2014, 34(31): 5579-5589 [8] 罗庆, 晁勤, 王一波, 等. 基于场景划分方法的风光出力耦合特性机理[J]. 电力自动化设备, 2014, 34(8): 42-46 LUO Qing, CHAO Qin, WANG Yibo, et al. Characteristics of wind-photovoltaic power output coupling based on scenario classification[J]. Electric Power Automation Equipment, 2014, 34(8): 42-46 [9] 吴红斌, 白雪, 王蕾. 基于序贯蒙特卡洛模拟的风光储发电系统可靠性评估[J]. 太阳能学报, 2017, 38(6): 1501-1509 WU Hongbin, BAI Xue, WANG Lei. Reliability evaluation of wind-solar-battery generation system based on sequential Monte Carlo simulation[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1501-1509 [10] 崔勇, 杨菊芳, 张栋. 基于风光互补的主动电网规划模型[J]. 中国电力, 2017, 50(5): 101-106, 125 CUI Yong, YANG Jufang, ZHANG Dong. Research on active power network planning model based on wind-solar complementation[J]. Electric Power, 2017, 50(5): 101-106, 125 [11] 卢锦玲, 於慧敏. 基于混合Copula的风光功率相关结构分析[J]. 太阳能学报, 2017, 38(11): 3188-3194 LU Jinling, YU Huimin. Dependence structure analysis of wind and PV power based on hybrid copula[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3188-3194 [12] 邱宜彬, 欧阳誉波, 徐蓓, 等. 基于混合藤Copula模型的风光联合发电相关性建模及其在无功优化中的应用[J]. 电网技术, 2017, 41(3): 791-798 QIU Yibin, OUYANG Yubo, XU Bei, et al. Modeling of multi-dimensional wind and PV farm output correlation based on mixture vine copula structures and its application in reactive power optimization[J]. Power System Technology, 2017, 41(3): 791-798 [13] HUSSAIN S, ALILI A A. A pruning approach to optimize synaptic connections and select relevant input parameters for neural network modelling of solar radiation[J]. Applied Soft Computing, 2017, 52: 898-908. [14] CHANG T P, LIU F J, KO H H, et al. Oscillation characteristic study of wind speed,global solar radiation and air temperature using wavelet analysis[J]. Applied Energy, 2017, 190: 650-657. [15] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164 YE Lin, QU Xiaoxu, YAO Yanxiang, et al. Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power Systems, 2018, 42(4): 158-164 [16] PENG C K, BULDYREV S V, HAVLIN S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(2): 1685. [17] PODOBNIK B, STANLEY H E. Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series[J]. Physical Review Letters, 2008, 100(8): 084102. [18] ZEBENDE G F. DCCA cross-correlation coefficient: Quantifying level of cross-correlation[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(4): 614-618. [19] ZEBENDE G F, DA SILVA M F, MACHADO FILHO A. DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(8): 1756-1761. [20] SUN X L, LIU Z X. Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 444: 667-679. [21] MITRA S K, BHATIA V, JANA R K, et al. Changing value detrended cross correlation coefficient over time: Between crude oil and crop prices[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 506: 671-678. [22] SHEN C H, LI C L, SI Y L. A detrended cross-correlation analysis of meteorological and API data in Nanjing, China[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 419: 417-42. [23] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性[J]. 物理学报, 2016, 65(1): 41-51 ZHAI Lusheng, JIN Ningde. Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pipe[J]. Acta Physica Sinica, 2016, 65(1): 41-51 [24] ZENG M, LI J H, MENG Q H, et al. Temporal-spatial cross-correlation analysis of non-stationary near-surface wind speed time series[J]. Journal of Central South University, 2017, 24(3): 692-698. [25] STOFFEL T, ANDREAS A. Elizabeth City State University: Elizabeth City, North Carolina (Data)[R]. US: National Renewable Energy Lab (NREL), Golden, CO (United States), 1985. [26] JAGER D, ANDREAS A. NREL national wind technology center (NWTC): M2 Tower; Boulder, Colorado (Data)[R]. US: National Renewable Energy Lab (NREL), Golden, CO (United States), 1996. [27] MAXEY C, ANDREAS A. Oak ridge national laboratory (ORNL); rotating shadowband radiometer (RSR); Oak ridge, Tennessee (DATA)[R]. US: National Renewable Energy Lab (NREL), Golden, CO (United States), 2007. [28] TRABEA A A, SHALTOUT M. Correlation of global solar radiation with meteorological parameters over Egypt[J]. Renewable Energy, 2000, 21(2): 297-308. [29] 齐志远, 郭佳伟, 李晓炀. 基于联合概率分布的风光互补发电系统优化配置[J]. 太阳能学报, 2018, 39(1): 203-209 QI Zhiyuan, GUO Jiawei, LI Xiaoyang. Optimal configuration for wind power and solar power hybrid systems based on joint probability distribution of wind speed with solar irradiance[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 203-209 [30] 赵继超, 钱康, 许文超, 等. 风光联合并网引起电压随机波动的概率评估[J]. 电力系统及其自动化学报, 2016, 28(9): 82-87 ZHAO Jichao, QIAN Kang, XU Wenchao, et al. Statistical assessment of voltage random fluctuation for joint grid integration of wind and PV power[J]. Proceedings of the CSU-EPSA, 2016, 28(9): 82-87 [31] 茆美琴, 周松林, 苏建徽. 基于风光联合概率分布的微电网概率潮流预测[J]. 电工技术学报, 2014, 29(2): 55-63 MAO Meiqin, ZHOU Songlin, SU Jianhui. Probabilistic power flow forecasting of microgrid based on joint probability distribution about wind and irradiance[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 55-63 |