[1] 徐雷, 夏向阳, 敬华兵, 等. 基于勒让德多项式的MMC自适应反步控制策略[J]. 中国电力, 2022, 55(3): 18–27 XU Lei, XIA Xiangyang, JING Huabing, et al. Adaptive back-stepping stability control strategy for MMC based on Legendre polynomial[J]. Electric Power, 2022, 55(3): 18–27 [2] 姬煜轲, 侯婷, 何智鹏, 等. 一种柔直换流阀用压接型IGBT功率子模块加速老化试验方法[J]. 南方电网技术, 2021, 15(5): 1–11 JI Yuke, HOU Ting, HE Zhipeng, et al. An accelerated aging test method of press-pack IGBTs based power submodules for VSC-HVDC converter valve[J]. Southern Power System Technology, 2021, 15(5): 1–11 [3] 崔磊, 杨通, 张如亮, 等. 一种复合终端逆阻IGBT数值仿真分析[J]. 中国电力, 2022, 55(9): 98–104 CUI Lei, YANG Tong, ZHANG Ruliang, et al. Numerical simulation analysis on a composite edge terminal reverse blocking IGBT[J]. Electric Power, 2022, 55(9): 98–104 [4] 马文忠, 田洪英, 刘慧玉, 等. 非隔离型模块化多电平DC/DC变换器的最小化桥臂环流控制[J]. 电力系统保护与控制, 2021, 49(22): 51–58 MA Wenzhong, TIAN Hongying, LIU Huiyu, et al. A minimized AC circulating control strategy for a non-isolated modular multilevel DC/DC converter[J]. Power System Protection and Control, 2021, 49(22): 51–58 [5] 赵伟, 袁至, 王维庆, 等. 基于附加电平MPC的MMC环流抑制与子模块双重均压控制[J]. 智慧电力, 2022, 50(3): 57–64 ZHAO Wei, YUAN Zhi, WANG Weiqing, et al. MMC circulating current suppression based on additional level MPC and sub-module dual voltage balancing control[J]. Smart Power, 2022, 50(3): 57–64 [6] 游广增, 宋钊, 贵子航, 等. 基于SoC系统的模块化多电平换流器全电磁暂态实时仿真[J]. 中国电力, 2022, 55(2): 159–165, 189 YOU Guangzeng, SONG Zhao, GUI Zihang, et al. SoC-based real-time simulation of MMC electromagnetic transient[J]. Electric Power, 2022, 55(2): 159–165, 189 [7] 任成林, 周竞宇, 翁海清, 等. 柔性直流输电功率模块电容的在线监测[J]. 南方电网技术, 2021, 15(2): 92–98 REN Chenglin, ZHOU Jingyu, WENG Haiqing, et al. Online monitoring of power module capacitance in VSC-HVDC transmission[J]. Southern Power System Technology, 2021, 15(2): 92–98 [8] 李标俊, 褚海洋, 庄志发, 等. 压接型IGBT功率模块加速老化试验方法[J]. 中国电力, 2022, 55(10): 87–91, 177 LI Biaojun, CHU Haiyang, ZHUANG Zhifa, et al. Accelerate aging test method for press-pack IGBT power module[J]. Electric Power, 2022, 55(10): 87–91, 177 [9] 郑重, 杜赫, 邱馨仪, 等. 高压直流断路器用压接式IGBT芯片封装设计[J]. 智慧电力, 2018, 46(10): 55–62 ZHENG Zhong, DU He, QIU Xinyi, et al. Packing design for press pack IGBT used in HVDC breaker[J]. Smart Power, 2018, 46(10): 55–62 [10] 李凯伟, 何怡刚, 李兵, 等. IGBT功率模块热网络模型建立及其参数辨识方法综述和展望[J]. 电子测量与仪器学报, 2020, 34(1): 51–60 LI Kaiwei, HE Yigang, LI Bing, et al. Review and prospect of IGBT power module thermal network model establishment and parameter extraction method[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(1): 51–60 [11] 何怡刚, 张钟韬, 刘嘉诚, 等. 一种考虑热扩散和热耦合的IGBT模块热阻抗模型[J]. 电工电能新技术, 2020, 39(5): 17–24 HE Yigang, ZHANG Zhongtao, LIU Jiacheng, et al. Thermal impedance model for IGBT modules considering heat spreading and thermal coupling[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(5): 17–24 [12] CHANG Y, LI W H, LUO H Z, et al. A 3D thermal network model for monitoring imbalanced thermal distribution of press-pack IGBT modules in MMC-HVDC applications[J]. Energies, 2019, 12(7): 1319. [13] LI D H, LI X, QI F, et al. Thermal networks generation and application in IGBT module packaging[C]//2018 19 th International Conference on Electronic Packaging Technology (ICEPT). Shanghai, China. IEEE, 2018: 23-26. [14] 白梁军, 黄萌, 饶臻, 等. 基于GARCH模型的IGBT寿命预测[J]. 中国电机工程学报, 2020, 40(18): 5787–5795 BAI Liangjun, HUANG Meng, RAO Zhen, et al. Lifetime prediction of IGBT based on GARCH model[J]. Proceedings of the CSEE, 2020, 40(18): 5787–5795 [15] 张经纬. 基于有限元法的压接型IGBT器件单芯片子模组疲劳寿命预测[D]. 北京: 华北电力大学(北京), 2018. ZHANG Jingwei. Fatigue life prediction of single-chip submodule of press-pack IGBTs based on finite element method[D]. Beijing: North China Electric Power University, 2018. [16] 耿学锋, 何赟泽, 李孟川, 等. IGBT多物理场建模技术与应用研究概述[J]. 中国电机工程学报, 2022, 42(1): 271–290 GENG Xuefeng, HE Yunze, LI Mengchuan, et al. An overview of IGBT multiphysics modeling technology and application[J]. Proceedings of the CSEE, 2022, 42(1): 271–290 [17] 祝令瑜, 占草, 刘琛硕, 等. 高压IGBT劣化机理分析及状态监测技术研究综述[J]. 高电压技术, 2021, 47(3): 903–916 ZHU Lingyu, ZHAN Cao, LIU Chenshuo, et al. Review of deterioration mechanism analysis and condition monitoring technology for high voltage IGBT[J]. High Voltage Engineering, 2021, 47(3): 903–916 [18] 邓吉利. 柔性直流换流阀压接式IGBT器件可靠性建模与评估[D]. 重庆: 重庆大学, 2018. DENG Jili. Reliability modeling and assessment of press-pack IGBT devices for the flexible DC converter valve[D]. Chongqing: Chongqing University, 2018. [19] 曾东, 孙林, 周雒维, 等. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[J]. 电工电能新技术, 2019, 38(7): 20–28 ZENG Dong, SUN Lin, ZHOU Luowei, et al. Reliability evaluation of IGBT performance degradation characteristic parameters based on accelerated aging test[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(7): 20–28 [20] 任艳, 彭琦, 于迪, 等. 基于加速寿命试验的IGBT可靠性预计模型研究[J]. 电力电子技术, 2017, 51(5): 121–124 REN Yan, PENG Qi, YU Di, et al. Research on the reliability prediction model for IGBT based on accelerated lifetime testing[J]. Power Electronics, 2017, 51(5): 121–124 [21] 莫跃, 刘思远, 李泽滔, 等. 模块化多电平换流器功率模块故障鲁棒检测[J]. 电力系统保护与控制, 2021, 49(23): 114–121 MO Yue, LIU Siyuan, LI Zetao, et al. Robust fault detection of a power module in a modular multilevel converter[J]. Power System Protection and Control, 2021, 49(23): 114–121 [22] 李武华, 陈玉香, 罗皓泽, 等. 大容量电力电子器件结温提取原理综述及展望[J]. 中国电机工程学报, 2016, 36(13): 3546–3557, 3373 LI Wuhua, CHEN Yuxiang, LUO Haoze, et al. Review and prospect of junction temperature extraction principle of high power semiconductor devices[J]. Proceedings of the CSEE, 2016, 36(13): 3546–3557, 3373 [23] 刘宾礼, 罗毅飞, 肖飞, 等. 基于传热动力学作用特征的IGBT结温预测数学模型[J]. 电工技术学报, 2017, 32(12): 79–87 LIU Binli, LUO Yifei, XIAO Fei, et al. Junction temperature prediction mathematical model of IGBT based on the characteristics of thermal dynamics[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 79–87 [24] 王存乐, 李志刚, 李雄, 等. 功率IGBT模块热网络参数提取研究综述[J]. 电工电气, 2017(10): 1–6, 16 WANG Cunle, LI Zhigang, LI Xiong, et al. Review of research on thermal network parameters extraction of power insulated gate bipolar translator module[J]. Electrotechnics Electric, 2017(10): 1–6, 16 [25] 余昆, 薛卜, 顾昉渊, 等. MMC整流器开关器件的损耗及温升建模研究[J]. 电力工程技术, 2021, 40(4): 18–25 YU Kun, XUE Bu, GU Fangyuan, et al. The loss and temperature rise modeling of MMC rectifier switching devices[J]. Electric Power Engineering Technology, 2021, 40(4): 18–25
|