[1] LI H, LONG H Y, YAO R, et al. A study on the failure evolution to short circuit of nanosilver sintered press-pack IGBT[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(1): 184-187. [2] TAKAHASHI Y, YOSHIKAWA K, SOUTOME M, et al. 2.5 kV-1 000 A power pack IGBT (high power flat-packaged NPT type RC-IGBT)[J]. IEEE Transactions on Electron Devices, 1999, 46(1): 245-250. [3] GUNTURI S, ASSAL J, SCHNEIDER D, et al. Innovative metal system for IGBT press pack modules[C]//ISPSD '03.2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003. Proceedings. Cambridge, UK. IEEE, 2003: 110-113. [4] KICIN S, LAITINEN M, HAEDERLI C, et al. Low-voltage AC drive based on double-sided cooled IGBT press-pack modules[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 2140-2146. [5] GERBER D, GUILLOD T, LEUTWYLER R, et al. Gate unit with improved short-circuit detection and turn-off capability for 4.5 kV press-pack IGBTs operated at 4 kA pulse current[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2641-2648. [6] FILSECKER F, ALVAREZ R, BERNET S. Comparison of 4.5 kV press-pack IGBTs and IGCTs for medium-voltage converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 440-449. [7] 窦泽春, 刘国友, 陈俊, 等. 大功率压接式IGBT器件设计与关键技术[J]. 大功率变流技术, 2016(2): 21-25, 34 DOU Zechun, LIU Guoyou, CHEN Jun, et al. Design and key technologies of high-power press-pack IGBT device[J]. High Power Converter Technology, 2016(2): 21-25, 34 [8] 刘国友, 窦泽春, 罗海辉, 等. 压接型IGBT均流设计[J]. 中国电力, 2019, 52(9): 20-29 LIU Guoyou, DOU Zechun, LUO Haihui, et al. Current-sharing design of press-pack IGBT[J]. Electric Power, 2019, 52(9): 20-29 [9] 李辉, 王晓, 姚然, 等. 计及内部材料疲劳的压接型IGBT器件可靠性建模与分析[J]. 中国电力, 2019, 52(9): 30-37 LI Hui, WANG Xiao, YAO Ran, et al. Reliability modeling and analysis of press-pack IGBTs considering internal material fatigue[J]. Electric Power, 2019, 52(9): 30-37 [10] HAO G F, ZHOU L, REN H, et al. Study on thermal buffering effect of phase change material on press- pack IGBT[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119584. [11] 石浩, 吴鹏飞, 唐新灵, 等. 封装寄生参数对并联lGBT芯片瞬态电流分布的影响规律[J]. 中国电力, 2019, 52(8): 16-25 SHI Hao, WU Pengfei, TANG Xinling, et al. Influence of package parasitic parameters on transient current distribution of paralleled IGBT chips[J]. Electric Power, 2019, 52(8): 16-25 [12] 唐新灵, 张朋, 陈中圆, 等. 高压大功率压接型IGBT器件封装技术研究综述[J]. 中国电机工程学报, 2019, 39(12): 3622-3637 TANG Xinling, ZHANG Peng, CHEN Zhongyuan, et al. Review of high voltage high power press pack IGBT package technology[J]. Proceedings of the CSEE, 2019, 39(12): 3622-3637 [13] 顾妙松, 崔翔, 彭程, 等. 电极结构与空间布置对压接型IGBT器件内部多芯片并联均流的影响(一): 计算研究[J]. 中国电机工程学报, 2020, 40(7): 2318-2329, 2410 GU Miaosong, CUI Xiang, PENG Cheng, et al. Influence of electrode structure and arrangement on current sharing performance inside a multi-chip press-pack IGBT Device (Part I): analysis and calculation[J]. Proceedings of the CSEE, 2020, 40(7): 2318-2329, 2410 [14] 傅实, 邓二平, 赵志斌, 等. 压接型IGBT器件多物理量测试方法综述[J]. 中国电机工程学报, 2020, 40(5): 1587-1604 FU Shi, DENG Erping, ZHAO Zhibin, et al. Overview of measurement methods of multiple physical parameters in press pack IGBTs[J]. Proceedings of the CSEE, 2020, 40(5): 1587-1604 [15] MATSUDA H, KAWAMURA N, HIYOSHI M, et al. A highly reliable press packed IGBT[J]. Electrical Engineering in Japan, 2000, 131(1): 78-85. [16] 高明超, 韩荣刚, 赵哿, 等. 压接式IGBT芯片的研制[J]. 固体电子学研究与进展, 2016, 36(1): 50-53 GAO Mingchao, HAN Ronggang, ZHAO Ge, et al. The research on IGBT chip for press-pack[J]. Research & Progress of Solid State Electronics, 2016, 36(1): 50-53 [17] TAKAHASHI Y, KOGA T, KIRIHATA H, et al. 2.5 kV-100 A flat-packaged IGBT (micro-stack IGBT)[J]. IEEE Transactions on Electron Devices, 1996, 43(12): 2276-2282. [18] KOGA T, YAMAZAKI K, WAKIMOTO H, et al. Ruggedness and reliability of the 2.5 kV-1.8 kA power pack IGBT with a novel multi-collector structure[C]//Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98(IEEE Cat. No.98CH36212). Kyoto, Japan. IEEE, 1998: 437-440. [19] SEKI Y. Advanced Power Pack IGBT: 2.5 kV/1.8 kA RC-IGBT with highly reliable and ruggedness flat package[C]//Seventh International Conference on Power Electronics and Variable Speed Drives. London, UK. IEEE, 1998: 258-262. [20] OMURA I, DOMON T, MIYAKE E, et al. Electrical and mechanical package design for 4.5kV ultra high power IEGT with 6kA turn-off capability[C]//ISPSD '03.2003 IEEE 15th International Symposium on Power Semiconductor Devices and ICs, 2003. Proceedings. Cambridge, UK. IEEE, 2003: 114-117. [21] MATSUDA H, HIYOSHI M, KAWAMURA N. Pressure contact assembly technology of high power devices[C]//Proceedings of 9th International Symposium on Power Semiconductor Devices and IC'S. Weimar, Germany. IEEE, 1997: 17-24. [22] 张彦飞, 吴郁, 游雪兰, 等. 硅材料功率半导体器件结终端技术的新发展[J]. 电子器件, 2009, 32(3): 538-546 ZHANG Yanfei, WU Yu, YOU Xuelan, et al. New development of junction termination techniques for power devices[J]. Chinese Journal of Electron Devices, 2009, 32(3): 538-546 [23] CUI L, WEN J L, LIU C J, et al. Double-sided edge termination of floating field rings for power semiconductor device[C]//2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). Hsinchu, Taiwan, China. IEEE, 2017: 1-2. [24] 温家良, 崔磊, 徐哲, 等. 一种垂直型半导体器件的双面终端结构: CN205984993U[P]. 2017-02-22.
|