[1] MOHAMMED S A, ABDEL-MOAMEN M A, HASANIN B. A review of the state-of-the-art of power electronics for power system applications[J]. Journal of Electronics and Communication Engineering Research, 2013, 1: 43-52. [2] WEISS H. Power electronics as key factor in generation, transmission, and usage of electric energy[C]//2014 ELEKTRO, Slovakia, IEEE. [3] MAJUMDAR G. Power modules as key component group for power electronics[C]// Power conversion conference, Apr. 2007. [4] STEGNER A, AUER T, CILIOX A. Next generation 1700 V IGBT and emitter controlled diode with. XT technology[C]// Int. Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe), Nuremberg, May 2014: 190-197. [5] SCHNEIDER D, FELLER L, TRUSSEL D, et al. Designing an IGBT module packaging for high quality and reliable operation[C]// PCIM Europe, May, 2008. [6] STOCKMEIER T. From packaging to “Un”-Packaging- trends in power semiconductor modules[C]// 20th Int. Symposium on Power Semiconductor Device & ICs (ISPSD). Orlando, IEEE, May. 2008: 12-19. [7] LUTZ J, SCHLANGENOTTO H, SCHEUERMANN U, et al. Semiconductor power devices-Physics, Characteristics, Reliability[M]. Springer, 2011. [8] LIANG Z. Status and trend of automotive power packaging[C]// 24th ISPSD. Bruges, IEEE, Jun. 2012: 325-331. [9] WANG Y, DAI X, LIU G, et al. Status and trend of power semiconductor module packaging for electric vehicles Chapter 2, Modeling and simulation for electric vehicle applications[J]. INTECH, 2016: 23-46. [10] LUTZ J. Packaging and reliability of power modules[C]// 8th Inter. Conf. on integrated power electronics systems (CIPS), Feb. 2014: 17-24. [11] AVRON A, Analysis of innovative technologies and packaging trends for power Modules[C]// 7th CIPS, Mar. 2012: 27-37. [12] 王彦刚, 戴小平, 吴义伯, 等. IGBT模块功率损耗的产生机理、计算及模拟[J]. 大功率变流技术, 2015(2): 62-66 WANG Yangang, DAI Xiaoping, WU Yibo, et al. The mechanism, calculation and simulation of power loss for IGBT modules[J]. High Power Converter Technology, 2015(2): 62-66 [13] CIAPPA M, CARBOGNANI F, FICHTNER W. Lifetime prediction and design of reliability tests for high-power devices in automotive applications[J]. IEEE Transactions on Device and Materials Reliability, 2003, 3(4): 191-196. [14] CIAPPA M, CARBOGNANI F, COVA P, et al. A novel thermomechanics-based lifetime prediction model for cycle fatigue failure mechanisms in power semiconductors[J]. Microelectronics Reliability, 2002, 42: 1653-1658. [15] BENNION K, MORENO G. Thermal management of power semiconductor packages-matching cooling technologies with packaging technologies[C]// IMAPS 2nd advanced technology workshop on automotive microelectronics and packaging, Apr. 2010. [16] QIAN C, GHEITAGHY A M, FAN J, et al. Thermal management on IGBT power electronics devices and modules[J]. IEEE Access, 2018, 6: 12868-12884. [17] Thermal design and temperature ratings of IGBT modules [Z]. ABB Application Note 5SYA 2093-00. [18] 李阳, 郑庆红. 大功率IGBT散热设计的模拟及实验研究[J]. 电源学报, 2018, 16(1): 107-111 LI Yang, ZHENG Qinghong. Simulation and experimental investigation on the thermal design of high-power IGBT[J]. Journal of Power Supply, 2018, 16(1): 107-111 [19] SCHULZ M. The Challenging Task of Thermal Management[C]// PCIM Europe, May 2011. [20] WANG Y, DAI X, WU Y. et al. Integrated liquid cooling automotive IGBT module for high temperature coolant application[C]// PCIM Europe, Nuremberg, May 2015: 1197-1203. [21] WANG Y, LI Y, MA Y. et al. Development of high thermal performance automotive power module with dual sided cooling capability[C]// PCIM Europe, Nuremberg, May 2017: 1-5. [22] WANG Y, LI Y, WU Y. Mitigation of challenges in automotive power module packaging by dual sided cooling[C]// 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, Sep. 2016: 1-8. [23] CHEN Y, YAN Y, LI B, et al. Thermal characterization analysis of IGBT power module integrated with a vapour chamber and pin-fin heat sink[C]// PCIM Europe, Nuremberg, May 2017: 939-946. [24] QI F, WANG Y, BOB-MANUEL C, et al. Advanced Cooling Solutions of High Power Automotive Module[C]// PCIM ASIA, June 2017. [25] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771 TANG Guangfu, PANG Hui, HE Zhiyuan. R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771 [26] 于坤山, 谢立军, 金锐. IGBT技术进展及其在柔性直流输电中的应用[J]. 电力系统自动化, 2016, 40(6): 139-143 YU Kunshan, XIE Lijun, JIN Rui. Recent development and application prospects of IGBT in flexible HVDC power system[J]. Automation of Electric Power Systems, 2016, 40(6): 139-143 [27] 刘国友, 窦泽春, 罗海辉, 等. 高功率密度3 600A/4 500V压接型IGBT研制[J]. 中国电机工程学报, 2018, 38(16): 4855-4862. LIU Guoyou, DOU Zechun, LUO Haihui, et al. Development of high power density 3 600A/4 500V press-pack IGBT[J]. Proceedings of the CSEE, 2018, 38(16): 4855-4862. [28] 刘国友, 覃荣震, 黄建伟, 等. 牵引级高压IGBT模块短路特性研究及其优化[J]. 机车电传动, 2014(1): 7-10, 15 LIU Guoyou, QIN Rongzhen, HUANG Jianwei, et al. Research and optimization of high-voltage IGBT module short circuit characteristics for traction application[J]. Electric Drive for Locomotives, 2014(1): 7-10, 15 [29] 刘国友, 吴义伯, 徐凝华, 等. 牵引级1 500 A/3 300 V IGBT功率模块的热学设计与仿真[J]. 机车电传动, 2013(1): 1-4, 38 LIU Guoyou, WU Yibo, XU Ninghua, et al. Thermal design and simulation of 1 500 A/3 300 V IGBT power module in traction applications[J]. Electric Drive for Locomotives, 2013(1): 1-4, 38 [30] WANG Y, DAI X, LIU G, An overview of advanced power semiconductor packaging for automotive system[C]// CIPS 2016; 9th Int. Conf. on Integrated Power Electronics Systems, Nuremberg, Germany, 2016: 1-6. [31] LIU Guoyou, LI Kongjing, WANG Yangang. Recent advances and trend of HEV/EV oriented power semiconductors - an overview[J]. IET Power Electronics, 2020, 13(3): 344-404. [32] LIU Guoyou, WU Yibo, LI Kongjing, et al. Development of high power SIC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452.
|