[1] 衣宝廉. 燃料电池—原理·技术·应用[M]. 北京: 化学工业出版社, 2003. [2] 江泽民. 对中国能源问题的思考[J]. 上海交通大学学报, 2008, 42(3): 345–359 JIANG Zemin. Reflections on energy issues in China[J]. Journal of Shanghai Jiao Tong University, 2008, 42(3): 345–359 [3] 毛宗强. 可再生能源丛书—燃料电池[M]. 北京: 化学工业出版社, 2005: 49–50. [4] CHIANG L K, LIU H C, SHIU Y H, et al. Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell[J]. Renewable Energy, 2008, 33(12): 2580–2588. [5] FONTANA S, AMENDOLA R, CHEVALIER S, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys[J]. Journal of Power Sources, 2007, 171(2): 652–662. [6] AHMAD N, ANSARI A A, LABIS J P, et al. Impact of Ni ion-doping on structural, optoelectronic[J]. Journal of Electronic Materials, 2018, 47(5): 2557–2564. [7] AMAN N A M N, MUCHTAR A, ROSLI M I, et al. Influence of thermal conductivity on the thermal behavior of intermediate-temperature solid oxide fuel cells[J]. Journal of Electrochemical Science and Technology, 2020, 11(2): 132–139. [8] ERMIS I, SHAIKH S P S. Study of crystallographic, thermal and electrical properties of (Bi2O3)1- x- y(Tb4O7) x(Gd2O3) y electrolyte for SOFC application[J]. Ceramics International, 2018, 44(15): 18776–18782. [9] FANG X, LIN Z. Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell[J]. Applied Energy, 2018, 229: 63–68. [10] JIANG C, GU Y, GUAN W, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904–915. [11] MAROCCO P, FERRERO D, LANZINI A, et al. Benefits from heat pipe integration in H2/H2O fed SOFC systems[J]. Applied Energy, 2019, 241: 472–482. [12] 刘文军, 欧名勇, 夏向阳, 等. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87–95 LIU Wenjun, OU Mingyong, XIA Xiangyang, et al. Research on online monitoring method of battery cluster inconsistency based on ohmic internal resistance voltage drop[J]. Electric Power, 2022, 55(8): 87–95 [13] 胡治国, 张磊冲, 司少康, 等. 基于电压下垂法的独立直流微网混合储能系统控制策略改进[J]. 智慧电力, 2022, 50(9): 39–44 HU Zhiguo, ZHANG Leichong, SI Shaokang, et al. Improvement of hybrid energy storage system control strategy of independent DC microgrid based on voltage sag method[J]. Smart Power, 2022, 50(9): 39–44 [14] MOLLA T T, KWOK K, FRANDSEN H L. Modeling the mechanical integrity of generic solid oxide cell stack designs exposed to long-term operation[J]. Fuel Cells, 2019, 19(1): 96–109. [15] VIJAYKUMAR V, NIRALA G, YADAV D, et al. Sucrose-nitrate auto combustion synthesis of Ce0.85 Ln0.10 Sr0.05 O2-δ (Ln=La and Gd) electrolytes for solid oxide fuel cells[J]. International Journal of Energy Research, 2020, 44(6): 4652–4663. [16] 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73–86, 95 LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55(8): 73–86, 95 [17] 刘英培, 田仕杰, 梁海平, 等. 考虑SOC的电池储能系统一次调频策略研究[J]. 电力系统保护与控制, 2022, 50(13): 107–118 LIU Yingpei, TIAN Shijie, LIANG Haiping, et al. Control strategy of a battery energy storage system considering SOC in primary frequency regulation of power grid[J]. Power System Protection and Control, 2022, 50(13): 107–118 [18] WU X D, JIANG J H, LI X, et al. Modeling and temperature distribution estimation based on Kalman filter algorithm of a planar solid oxide fuel cell[C]//2017 Chinese Automation Congress (CAC). Jinan, China. IEEE, 2018: 4281–4285. [19] CHENG H, XI L, JIANG J, et al. A nonlinear sliding mode observer for the estimation of temperature distribution in a planar solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(1): 593–606. [20] YUAN P, LIU S F. Numerical analysis of temperature and current density distribution of a planar solid oxide fuel cell unit with nonuniform inlet flow[J]. Numerical Heat Transfer, Part A: Applications, 2007, 51(10): 941–957. [21] XU M X, LI X. Modeling and temperature distribution analysis of a single cell in cross-flow planar solid oxide fuel cell[C]//2015 Chinese Automation Congress (CAC). Wuhan, China. IEEE, 2016: 1448–1451. [22] 樊鹏飞, 张兄文, 李国君, 等. 板式固体氧化物燃料电池的热应力分析[J]. 西安交通大学学报, 2012, 46(7): 75–81 FAN Pengfei, ZHANG Xiongwen, LI Guojun, et al. Analysis on thermal stress of a planar solid oxide fuel cell[J]. Journal of Xi'an Jiaotong University, 2012, 46(7): 75–81 [23] ZHANG Z Q, WANG Y L, BA L M. Analysis of heat and mass transfer for a single-planar-anode-supported solid oxide fuel cell considering internal reforming[J]. Journal of Thermal Science, 2020, 29(3): 697–707. [24] GUK E, VENKATESAN V, Babar S, et al. Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell[J]. Applied Energy, 2019, 241: 164–173. [25] RAZBANI O, WÆRNHUS I, ASSADI M. Experimental investigation of temperature distribution over a planar solid oxide fuel cell[J]. Applied Energy, 2013, 105: 155–160. [26] CELIK S, TIMURKUTLUK B, MAT M D. Measurement of the temperature distribution in a large solid oxide fuel cell short stack[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10534–10541. [27] BEALE S B, ANDERSSON M, BOIGUES-MUÑOZ C, et al. Continuum scale modelling and complementary experimentation of solid oxide cells[J]. Progress in Energy and Combustion Science, 2021, 85: 100902. [28] 汪杰. 大面积平板式SOFC单电池测试及性能研究[D]. 武汉: 华中科技大学, 2011. WANG Jie. Testing and performance study of planar SOFC single cell with large active reaction area[D]. Wuhan: Huazhong University of Science and Technology, 2011.
|