[1] 张金营, 孙蓟光. 基于控制受限MIMO预测控制的超超临界机组集中式协调控制[J]. 中国电力, 2019, 52(5): 21-28 ZHANG Jinying, SUN Jiguang. Centralized coordination control of ultra-supercritical unit based on control-constrained MIMO predictive control[J]. Electric Power, 2019, 52(5): 21-28 [2] 蔡利军, 朱豫才, 吕霞, 等. 模型预测控制在超超临界机组AGC协调控制和主汽温控制中的应用[J]. 中国电力, 2018, 51(7): 68-77 CAI Lijun, ZHU Yucai, LV Xia, et al. MPC applications in AGC CCS and steam temperature control on two ultra-supercritical coal-fired power generation units[J]. Electric Power, 2018, 51(7): 68-77 [3] 钱虹, 陈丹, 杨祖魁, 等. 约束预测控制在低氮燃烧机组过热蒸汽温度控制系统中的应用[J]. 中国电力, 2017, 50(10): 129-135 QIAN Hong, CHEN Dan, YANG Zukui, et al. Application of constrained predictive control in steam temperature control system of low NOx combustion power unit[J]. Electric Power, 2017, 50(10): 129-135 [4] LAWRYNCZUK M. Nonlinear predictive control of a boiler-turbine unit: a state-space approach with successive on-line model linearisation and quadratic optimisation[J]. ISA Transactions, 2017, 67: 476-495. [5] BONFIGLIO A, CACCIACARNE S, INVERNIZZI M, et al. Gas turbine generating units control via feedback linearization approach[J]. Energy, 2017, 121: 491-512. [6] WIESE A P, BLOM M J, MANZIE C, et al. Model reduction and MIMO model predictive control of gas turbine systems[J]. Control Engineering Practice, 2015, 45(45): 194-206. [7] WU X, SHEN J, LI Y G, et al. Flexible operation of post-combustion solvent-based carbon capture for coal-fired power plants using multi-model predictive control: a simulation study[J]. Fuel, 2018, 220: 931-941. [8] TAN P, XIA J, ZHANG C, et al. Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method[J]. Energy, 2016, 94: 672-679. [9] LIU X J, KONG X B, HOU G L, et al. Modeling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods[J]. Energy Conversion and Management, 2013, 65(1): 518-527. [10] TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132. [11] HOU G, YANG Y, JIANG Z, et al. A new approach of modeling an ultra-super-critical power plant for performance improvement[J]. Energies, 2016, 9(5): 310. [12] HOU G L, DU H, YANG Y, et al. Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure[J]. ISA Transactions, 2018, 74: 120-133. [13] KLAUČO M, KVASNICA M. Control of a boiler-turbine unit using MPC-based reference governors[J]. Applied Thermal Engineering, 2017, 110: 1437-1447. [14] KONG X B, LIU X J, LEE K Y. An effective nonlinear multivariable HMPC for USC power plant incorporating NFN-based modeling[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 555-566. [15] 崔靖涵, 刘向杰, 孔小兵. 锅炉-汽轮机系统的模糊经济模型预测控制[J]. 控制理论与应用, 2018, 35(3): 308-316 CUI Jinghan, LIU Xiangjie, KONG Xiaobing. Fuzzy economic predictive control of boiler-turbine system[J]. Control Theory & Applications, 2018, 35(3): 308-316 [16] HOU G L, GONG L J, HUANG C Z, et al. Novel fuzzy modeling and energy-saving predictive control of coordinated control system in 1000 MW ultra-supercritical unit[J]. ISA Transactions, 2019, 86: 48-61. [17] PATEL V K, SAVSANI V J. Heat transfer search (HTS): a novel optimization algorithm[J]. Information Sciences, 2015, 324: 217-246. [18] MAHARANA D, KOTECHA P. Simultaneous heat transfer search for computationally expensive numerical optimization[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, Canada, 2016. [19] HOU G L, GONG L J, DAI X Y, et al. A novel fuzzy model predictive control of a gas turbine in the combined cycle unit[J]. Complexity, 2018: 1-18. [20] CAMPOREALE S M, FORTUNATO B, MASTROVITO M. A modular code for real time dynamic simulation of gas turbines in simulink[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 506-517. [21] 富兆龙, 刘志勇, 张琨鹏,等. PG9171E型燃气轮机温度控制分析[J]. 中国电力, 2015, 48(2): 31-37 FU Zhaolong, LIU Zhiyong, ZHANG Kunpeng, et al. Analysis on temperature control for PG9171E gas turbines[J]. Electric Power, 2015, 48(2): 31-37 [22] ARTHUR D, VASSILVITSKⅡ S. k-means++: The advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, New Orleans, USA, 2007. [23] 李少远, 李柠. 复杂系统的模糊预测控制及其应用[M]. 北京: 科学出版社, 2003: 57-65.
|