中国电力 ›› 2024, Vol. 57 ›› Issue (5): 200-210.DOI: 10.11930/j.issn.1004-9649.202311004

• 电网 • 上一篇    下一篇

基于SF6气体温度迟滞模型的密度监测失效判定策略

朱榜超(), 商琼玲(), 黄珠羡   

  1. 广西电网有限责任公司百色供电局,广西 百色 533000
  • 收稿日期:2023-11-02 出版日期:2024-05-28 发布日期:2024-05-16
  • 作者简介:朱榜超(1984—),男,通信作者,高级工程师,从事变电检修研究,E-mail:362032658@qq.com
    商琼玲(1989—),女,工程师,从事高压试验、变电管理研究,E-mail:823829113@qq.com
  • 基金资助:
    广西电网有限责任公司科技项目(041300KK52220002)。

SF6 Gas Temperature Hysteresis Model Based Density Monitoring Failure Judgement Criterion

Bangchao ZHU(), Qiongling SHANG(), Zhuxian HUANG   

  1. Baise Power Supply Bureau of Guangxi Power Grid, Baise 533000, China
  • Received:2023-11-02 Online:2024-05-28 Published:2024-05-16
  • Supported by:
    This work is supported by Guangxi Power Grid Science and Technology Project (No.041300KK52220002).

摘要:

气体绝缘开关(gas insulated switchgear, GIS)设备SF6气体密度监测失效可能会导致泄漏状态误判断,威胁电网安全运行。为此,针对数字式SF6气体密度监测装置特点,构建并优化了基于热力学的SF6气体温度迟滞模型。通过温度迟滞实验,获取了模型中未知参数。模拟实验表明,SF6气体温度迟滞模型温度补偿偏差为±0.6 ℃,基于补偿后温度的计算压力与压力传感器检测压力偏差为±0.002 MPa。设计基于计算压力与检测压力相互验证的密度监测失效判定策略,结合某220 kV变电站中试点设备数据进行验证,经SF6气体温度迟滞模型温度补偿并归算至20 ℃下的压力与实际值均不超过0.002 MPa,验证了该模型的准确度以及SF6气体密度监测失效判定策略现场应用的可行性。

关键词: SF6气体, 数字式SF6气体密度监测装置, 监测失效判定, 温度迟滞模型

Abstract:

The malfunctioning of SF6 gas density monitoring in GIS equipment could erroneously indicate a leakage, potentially compromising the electrical grid's safe operation. In response, a thermodynamics-based temperature hysteresis model for SF6 gas was developed and refined, tailored for digital gas density monitoring apparatus. The model's unknown parameters were deduced from temperature hysteresis experiments. The simulations highlighted a temperature compensation deviation in the SF6 gas temperature hysteresis model of ±0.6 ℃, with a pressure calculation discrepancy, corrected for temperature, showing only ±0.002 MPa against sensor-detected pressures. A strategic approach for identifying density monitoring failures was devised, which relies on the corroboration between calculated and sensor-detected pressures. This approach was put to the test using data from a pilot device in a 220 kV substation. After applying temperature adjustments through the SF6 gas temperature hysteresis model and recalibrating the pressure to standard conditions at 20 ℃, the results remained within a tight margin of 0.002 MPa, attesting to the model's precision and the practicality of the proposed SF6 gas density monitoring failure detection strategy in operational environments.

Key words: SF6 gas, digital SF6 gas density monitoring device, monitoring failure determination, temperature hysteresis model