中国电力 ›› 2018, Vol. 51 ›› Issue (5): 166-171.DOI: 10.11930/j.issn.1004-9649.201704041

• 技术经济 • 上一篇    下一篇

基于regARIMA模型的月度负荷预测效果研究

苏振宇1,2, 龙勇1, 赵丽艳3   

  1. 1. 重庆大学 经济与工商管理学院, 重庆 400030;
    2. 甘肃省电力公司培训中心, 甘肃 兰州 730070;
    3. 甘肃省电力科学研究院, 甘肃 兰州 730070
  • 收稿日期:2017-04-11 修回日期:2018-02-10 出版日期:2018-05-05 发布日期:2018-05-07
  • 作者简介:苏振宇(1972-),男,河北承德人,博士研究生,高级讲师,从事电力技术经济管理、人力资源开发等研究,E-mail:513457198@qq.com
  • 基金资助:
    国家社会科学基金重点项目(14AZD130)。

Study on the Monthly Power Load Forecasting Performance Based on regARIMA Model

SU Zhenyu1,2, LONG Yong1, ZHAO Liyan3   

  1. 1. School of Economics and Business Administration, Chongqing University, Chongqing 400030, China;
    2. Gansu Electric Power Training Center, Lanzhou 730070, China;
    3. Gansu Electric Power Research Institute, Lanzhou 730070, China
  • Received:2017-04-11 Revised:2018-02-10 Online:2018-05-05 Published:2018-05-07
  • Supported by:
    This work is supported by National Social Science Fund(No.14AZD130).

摘要: 为探究离群值对月度负荷预测效果的影响,建立计及离群值影响的季节性ARIMA月度负荷预测模型(regARIMA),选择1999—2017年北京、甘肃等5省(市)的实际月度负荷数据,对预测效果进行比较研究。结果表明,与普通ARIMA模型相比,考虑了离群值影响的regARIMA模型的3年样本内平均预测误差得到明显改善;应用regARIMA模型进行提前12期的样本外预测,预测精度获得不同程度的提升。

关键词: 月度负荷, 负荷预测, 离群值, regARIMA模型

Abstract: In order to explore the impact of outliers on the monthly power load forecasting performance, a seasonal ARIMA model considering the impact of outliers (regARIMA) is established. The actual monthly power load data series of 5 provinces recorded from January 1999 to December 2017 are used to verify the accuracy of power load forecasting. The empirical results show that the forecasting error of the regARIMA model considering the outliers impact is significantly reduced within samples for last 3 years. The forecasting accuracy of the regARIMA out of samples for 12 steps ahead is also improved to some extent.

Key words: monthly power load, power load forecasting, outliers, regARIMA model

中图分类号: