中国电力 ›› 2014, Vol. 47 ›› Issue (12): 61-65.DOI: 10.11930/j.issn.1004-9649.2014.12.61.4

• 电网 • 上一篇    下一篇

重庆地区电力负荷特性及其影响因素分析

雷绍兰1, 古亮1, 杨佳1, 刘欣宇2   

  1. 1. 重庆理工大学 电子信息学院,重庆 400054;
    2. 重庆市电力公司,重庆 400014
  • 收稿日期:2014-09-13 出版日期:2014-12-18 发布日期:2015-12-08
  • 作者简介:雷绍兰(1971—),女,四川广安人,博士,副教授,从事电力系统短期负荷预测技术和电力系统运行与控制等研究。E-mail: leishaolan@cqut.edu.cn
  • 基金资助:
    国家青年科学基金资助项目(51107155)

Analysis of Electric Power Load Characteristics and Its Influencing Factors in Chongqing Region

LEI Shao-lan1, GU Liang1, YANG Jia1, LIU Xin-yu2   

  1. 1. School of Electronic Information and Automation, Chongqing University of Technology, Chongqing 400054, China;
    2. Chongqing Electric Power Corp., Chongqing 400014, China
  • Received:2014-09-13 Online:2014-12-18 Published:2015-12-08
  • Supported by:
    This work is supported by National Science Fund for Distinguished Young Scholars (51107155)

摘要: 研究电力负荷变化特性和规律对提高短期负荷预测精度具有重要意义。根据重庆地区近年来收集的历史负荷数据和气象数据等相关信息,分析了年最大和最小负荷及典型日负荷曲线的变化规律,研究了该地区的负荷特性与主要影响因素之间的相互关系,并针对重庆地域特点,分析了各主要影响因素对该地区负荷的影响程度和主要影响时段。研究结果表明,目前温度、降雨量和节假日对重庆地区电力负荷的影响较大,可为研究重庆地区电力短期负荷预测方法和分析未来智能电网的负荷特性提供理论依据。

关键词: 电力负荷, 气象因子, 相关性, 影响因素, 负荷特性

Abstract: It is very important to study the load variation characteristics for improving the short-term load forecasting accuracy. The variation characteristics of the annual maximum load, annual minimum load and typical daily load is analyzed in this paper based on the recent historical load data and meteorological data of Chongqing region. Besides, the interrelationship between the load characteristics and the major influencing factors is studied, and the influencing extent of the major factors on the region’s load and the main influencing time period are analyzed according to Chongqing’s geographic characteristics. The results show that the temperature, rainfall, holidays and festivals have a significant influence on the Chongqing region’s power load at present, which can provide a theoretical basis for studying the short-term load forecasting method and analyzing the smart grid load characteristics.

Key words: electric power load, meteorological factor, correlation, influencing factor, load characteristics

中图分类号: